首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, many channelized rivers tend to be heavily vegetated due to regime shifts in hydrological, fluvial and ecological processes. Dense vegetation in a river frequently obstructs a flood flow and reduces conveyance capacity of channels. On the other hand, river vegetation provides various ecological services such as habitats for various species and life, natural cycle of organic and inorganic substances, etc.. It is of engineering importance to understand vegetation hydrodynamics in order to preserve vegetation nature and keep a certain level of flow conveyance capacity. In view that willows tend to be densely vegetated along the shoreline of floodplains or sandbars, a field measurement, a physical model experiment and a numerical analysis were carried out for investigating hydrodynamics in an open channel with riparian vegetation. Discussion was made focusing on flow and shear layer structures developed around the vegetation canopy.  相似文献   

2.
Extremely high river discharges in 1993 and 1995 along the Dutch rivers Rhine and Meuse have increased the public awareness of possible safety threats. As a result the ‘Space for Rivers’ program was implemented, aiming at restoring physical space for the rivers in combination with ecological rehabilitation. However, the development of species‐rich vegetation types in these floodplain areas is lagging behind restoration targets and biogeochemical constraints may play a vital role in this. Biogeochemical, hydrological and vegetation data were collected in 111 plots in both rehabilitated and original floodplains in regulated and more pristine river systems in The Netherlands and Poland. Soil nutrient and soil pore water data were summarized by factor analysis and the subsequent principal components were compared to vegetation and hydrological data by correlation analysis. The correlation analyses between vegetation parameters including nutrient stoichiometry and the biogeochemical soil variables resulted in a remarkable difference between pristine and impacted river systems. The results suggest a clear N‐limitation of plant growth in pristine floodplains, and apparent absence of limitation in regulated, impacted floodplains. In addition, results indicate that flooding events do not lead to one‐way transport of sediment and nutrients from the river into the floodplains; rather they indicate that highly dynamic hydrological conditions prevent soils from accumulating organic matter and nutrients. This study shows that nutrient limitation in regulated floodplains shifted from distinctly N‐limited plant growth to no nutrient limitation at all, probably due to decades of high fertilizer and manure application and nutrient input by the rivers during flooding. The consequence of our findings for rehabilitation activities is that it might be necessary to restore nitrogen limitation in floodplain systems in order to create opportunities for a species‐rich floodplain vegetation, through nutrient removal by hay‐making. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Critical to restoring the nature conservation value of many river corridors is an understanding of how alluvial landscapes will respond to cessation of river management and land use practices that have previously degraded the environment. This paper analyses changes in valley floor landforms and vegetation patch dynamics, in relation to fluvial disturbance, over a period of almost 100 years following flood embankment abandonment on a wandering gravel‐bed river, namely the River Tummel, Scotland. Such rivers were once typical of many draining upland areas of northern maritime Europe. Prior to abandonment the valley floor landscape was agriculturally dominated and the river for the most part was single thread confined between flood embankments. The pattern of landform change and vegetation patch development over time following a decision in 1903 not to maintain embankments was tracked by geomorphic and land cover mapping utilizing successive sets of aerial photography for the period 1946 to 1994. A historical context for these changes was also feasible because the channel planform in 1900 and earlier channel planform changes dating back to 1753 were known due to the availability of old maps and earlier geomorphic studies. The land cover mapping was validated by comparison of results produced from the interpretation work on the 1994 aerial photographs with the field‐based UK National Vegetation Classification protocol. The findings of the study illustrate that bordering the River Tummel fluvial landforms and vegetation patch mosaics, presumably resembling those that occurred before valley floor land use intensification, evolved in less than 50 years after flood embankment abandonment with a resultant increase in habitat diversity. The change relates primarily to flood‐induced channel planform change and moderate levels of fluvial disturbance. The general significance of this change to plant species diversity on the valley floor of the River Tummel and elsewhere is discussed as is possible implications of the upstream impoundment and scenarios for climatically induced changes in flood frequency and magnitude. The overall outcome is the strong possibility that simple changes in river management and land use practices could result in re‐establishment of the nature conservation value of similar river corridors in Europe over the medium term without active restoration efforts. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
The expected recovery of the natural conditions of large regulated rivers over the distance downstream from a dam is limited by relative tributary size according to the Serial Discontinuity Concept; however, geomorphology may also influence the recovery process. We examined the woody vegetation of the riparian zone in seven river segments distributed along the regulated reach of the Tiétar River in central‐western Spain, which flows through two distinct geomorphic templates. Whereas the annual runoff has decreased by 30% on average along the entire studied reach following the construction of the Rosarito Dam and the initiation of field irrigation in the region, the magnitude and frequency of the peak flows decreased by 30% immediately downstream from the dam but recovered the natural values with the distance downstream. We evaluated the recovery patterns toward the natural riparian conditions by comparing woody species composition, diversity and distribution of vegetation patches established prior to and after dam completion. Our results did not indicate a recovery gradient of any of the analysed vegetation attributes downstream from the dam. Instead, we found that the difference in the slope of the stream channel and banks, the width of the valley and the size of substratum particles among the surveyed patches were factors that significantly mediated dam and tributary effects on vegetation and influenced the degree of vegetation recovery. Hence, the maintenance of the intensity of the flow alteration scheme by the numerous water withdrawals and the low tributary contributions, coupled with differential geomorphological characteristics along the reach, overwhelmed the natural tendency for the river to restore its natural conditions with distance downstream. Improving water management and, particularly, restoring endangered riparian ecosystems require a detailed understanding of existing and potential woody species behaviour across the geomorphological settings of rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents the results of an investigation into environmental controls on vegetation dynamics on gravel bars. Such environments are a hotspot of threatened plant biodiversity and the dynamics of their vegetation reflect a range of processes that should be indicative of the integrity of the wider floodplain ecosystem. The study was undertaken on a 2 ha mid‐channel gravel bar complex that evolved over two decades, in response to several high magnitude flood events (including two with a return period in excess of 25 years), on a ‘wandering’ reach of the River Tummel, Scotland. Over 180 plant species, including a number of national or regional scarcities, had colonized. The fluvial chronology of the site was documented via sequential sets of aerial photography that revealed a number of discrete surfaces created by individual floods. Environmental heterogeneity, both within and between fluvial units, was investigated by field sampling of vegetation and abiotic variables at 66 locations. The fluvial surfaces were assigned to five habitat classes that ranged in age from two to approximately 20 years, from fine gravel to cobbles, and maintained an elevation range of up to 2.5 metres above low flow river levels. Multivariate analysis highlighted the relative importance of elevation, grain size, moisture content and infiltration and trapping of fines in controlling plant species composition. After standardizing sampling effort the habitat mosaic was found to support on average 1.36 times more species than an equivalent sample of any one habitat. In terms of biodiversity and river management, our results emphasize the importance of sustaining fluvial processes that preserve the habitat mosaic in order to conserve the characteristic biota of gravel bar complexes and river channel islands. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Historical trends in hydrology, geomorphology, and floodplain vegetation provide fundamental contexts for designing future management of large rivers, an area of fluvial research extensively informed by studies of historical channel dynamics. Changes in hydrology, channel structure, floodplain forests, and large wood were documented for the 273‐km main stem of the Willamette River from 1850 to present. Reduced sediment supply and frequency and magnitude of floods have decreased channel mobility and incised channels, leading to fewer gravel bars, islands, and side channels. Human alteration of channel morphology, vegetation, and bank hardening has exacerbated channel simplification caused by reductions in floods, sediment supply, and inputs of wood. A substantial number of floodplain channels reoccupied remnants of previous active channels inundated during recent floods, demonstrating functional but often forgotten role of historical geomorphic structure in modern floodplains and flood processes. In most reaches, area of floodplain forests in 1990 was only 10% to 25% of the area of forests in 1850. Abundance of wood in the wetted channel was generally greater in reaches with higher abundances of floodplain forests. Future trajectories will be influenced by legacies of the historical river but increasingly will reflect evolution of a new river shaped by human development, changing climate, and emerging hydrogeomorphic and vegetation processes. Understanding historical characteristics and anticipating future rates and patterns of ecosystem change provide fundamental contexts for restoring biophysical processes and structure in a large floodplain river.  相似文献   

7.
Rivers and their floodplains worldwide have changed dramatically over the last century because of regulation by dams, flow diversions and channel stabilization. Floodplains no longer inundated by river flows following dam‐induced flood reduction comprise large areas of bottomland habitat, but the effects of abandonment on plant communities are not well understood. Using a hydraulic flow model, geomorphic mapping and field surveys, we addressed the following questions along the Bill Williams River, Arizona: (i) What per cent of the bottomland do abandoned floodplains comprise? and (ii) Are abandoned floodplains quantitatively different from adjacent xeric and riparian surfaces in terms of vegetation composition and surface sediment? We found that nearly 70% of active channel and floodplain area was abandoned following dam installation. Abandoned floodplains along the Bill Williams River tend to be similar to each other yet distinct from neighbouring habitats: they have been altered physically from their historic state, leading to distinct combinations of surface sediments, hydrology and plant communities. Abandoned floodplains may transition to xeric communities over time but are likely to retain some riparian qualities as long as there is access to relatively shallow ground water. With expected increases in water demand and drying climatic conditions in many regions, these surfaces and associated vegetation will continue to be extensive in riparian landscapes worldwide. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
As anthropogenic impacts on riverine ecosystems expand, both aquatic and terrestrial ecosystems are influenced over large spatiotemporal scales. We predicted how riparian bird communities changed in response to long‐term changes in floodplain landscapes such as woodland expansion (i.e. rapid increases in vegetation cover on gravel bars and the progress of vegetation succession due to a decrease in the frequency and magnitude of flood disturbance). To test the hypothesis that woodland expansion after dam construction reduces the abundance of gravel bar‐nesting birds and increases the abundance of forest‐nesting birds, we estimated historical changes between past and present bird abundances using species distribution models across multiple rivers that were either unregulated or regulated by dams. We created past and present vegetation maps from remote sensing images and used habitat quantities as explanatory variables in the species distribution models. As we hypothesized, the estimated abundance of gravel bar‐nesting birds decreased and that of forest‐nesting birds increased because of woodland expansion in some regulated rivers. This suggests that anthropogenic alterations of riverine conditions (e.g. dam construction) can affect terrestrial ecosystems (e.g. riparian bird communities) through changes in floodplains (e.g. woodland expansion). In addition, our findings highlight the efficacy of combining spatial and temporal analyses when examining long‐term ecological dynamics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Dam releases used to create downstream flows that mimic historic floods in timing, peak magnitude and recession rate are touted as key tools for restoring riparian vegetation on large regulated rivers. We analysed a flood on the 5th‐order Green River below Flaming Gorge Dam, Colorado, in a broad alluvial valley where Fremont cottonwood riparian forests have senesced and little recruitment has occurred since dam completion in 1962. The stable post dam flow regime triggered the development of novel riparian communities with dense herbaceous plant cover. We monitored cottonwood recruitment on landforms inundated by a managed flood equal in magnitude and timing to the average pre‐dam flood. To understand the potential for using managed floods as a riparian restoration tool, we implemented a controlled and replicated experiment to test the effects of artificially modified ground layer vegetation on cottonwood seedling establishment. Treatments to remove herbaceous vegetation and create bare ground included herbicide application (H), ploughing (P), and herbicide plus ploughing (H + P). Treatment improved seedling establishment. Initial seedling densities on treated areas were as much as 1200% higher than on neighbouring control (C) areas, but varied over three orders of magnitude among the five locations where manipulations were replicated. Only two replicates showed the expected seedling density rank of (H + P) > P > H> C. Few seedlings established in control plots and none survived 1 year. Seedling density was strongly affected by seed rain density. Herbivory affected growth and survivorship of recruits, and few survived nine growing seasons. Our results suggest that the novel plant communities are ecologically and geomorphically resistant to change. Managed flooding alone, using flows equal to the pre‐dam mean annual peak flood, is an ineffective riparian restoration tool where such ecosystem states are present and floods cannot create new habitat for seedling establishment. This problem significantly limits long‐term river and riparian management options. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Historically, the Kissimmee River Basin consisted of a broad nearly annually inundated riparian wetland similar in character to tropical Southern Hemisphere large rivers. The river was channelized in the 1960s and 1970s, draining the wetland. The river is currently being restored with over 10 000 hectares of wetlands being reconnected to 70 river km of naturalized channel. We monitored riparian wetland sediment dynamics between 2007 and 2010 at 87 sites in the restored reach and 14 sites in an unrestored reference reach. Discharge and sediment transport were measured at the downstream end of the restored reach. There were three flooding events during the study, two as annual flood events and a third as a greater than a 5‐year flood event. Restoration has returned periodic flood flow to the riparian wetland and provides a mean sedimentation rate of 11.3 mm per year over the study period in the restored reach compared with 1.7 mm per year in an unrestored channelized reach. Sedimentation from the two annual floods was within the normal range for alluvial Coastal Plain rivers. Sediment deposits consisted of over 20% organics, similar to eastern blackwater rivers. The Kissimmee River is unique in North America for its hybrid alluvial/blackwater nature. Fluvial suspended‐sediment measurements for the three flood events indicate that a majority of the sediment (70%) was sand, which is important for natural levee construction. Of the total suspended sediment load for the three flood events, 3%–16% was organic and important in floodplain deposition. Sediment yield is similar to low‐gradient rivers draining to the Chesapeake Bay and alluvial rivers of the southeastern USA. Continued monitoring should determine whether observed sediment transport and floodplain deposition rates are normal for this river and determine the relationship between historic vegetation community restoration, hydroperiod restoration, and sedimentation. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

11.
河岸植被覆盖影响下的河流演化动力特性分析   总被引:3,自引:0,他引:3  
杨树青  白玉川  徐海珏  黄哲 《水利学报》2018,49(8):995-1006
河岸植被对河道的水流运动、主槽稳定及河湾迁移等均有重要的影响,尤其是在洪水期河流的演化过程中。为分析不同密度植被护岸对河流动力过程的影响响应,本文采用自然模型实验,通过改变河岸植被种植密度及单双岸布设方式,模拟河岸有无植被种植的河流演化过程。给定相同的造床流量、坡降、泥沙粒径等水沙边界条件,设定控制变量为河岸植被覆盖率,分别为0%,20%,40%,80%。实验结果表明:(1)单岸植被覆盖其主流稳定性较两岸植被覆盖为差;(2)河岸植被越密集,水流对河床的局部扰动越强烈,河演达到稳定状态周期越长;(3)两岸植被覆盖的蜿蜒河道其稳定曲率随植被覆盖率增大而减小,较大的水流剪切力会造成较大的河湾迁移。  相似文献   

12.
The natural flow regime and the relationship between flows and riparian vegetation are described for sites on both the Blackwood River in south‐western Australia and the Ord River in north‐western Australia. Analysis of long‐term flow data showed the historic mean monthly river discharge for the Blackwood River is strongly seasonal and highly predictable with generally low variability each month. The Ord River showed a strong seasonality of flows with about 92% of the (total) yearly flow occurring between December and March. Flow variability was very high (e.g. coefficient of variation >100% for all months) but highly predictable, with this mostly attributed to low but constant dry‐season flows. Water depth, duration of flood events and the number of flood events per year show a significant correlation with aspects of the riparian vegetation within experimental vegetation plots. Results highlight the strong relationship between floristics, life form structure and population dynamics with stream hydrology. On the Blackwood River, species richness and cover of shrubs reduced with increased duration and frequency of flooding, while cover of exotic species and annual herbs increased with increased flooding. Germination of tree seedlings was not influenced by flood regime but size class of tree species increased with flooding frequency. On the Ord River, species richness was not influenced by flooding regime. However, cover of perennial grasses increased with flooding frequency whilst cover of shrubs decreased. There was no relationship between flooding and seedling establishment whilst tree size class decreased with increased flooding. The methods described here can be used to compare the response of different components of the riparian vegetation to different fluvial regimes (e.g. because of impoundment and abstraction). This technique can be expanded for the management of riparian zones and planning rehabilitation programmes. It may also be useful for improving the ecological knowledge base for setting environmental flows in regulated systems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Many gravel bed rivers in the European Alpine area suffered different ranges and types of human pressure that modified their morphology and altered their processes. This work presents the case of the middle portion of the Brenta River, historically impacted by human activities such as floodplain occupations, bank protection, gravel mining, hydropower schemes and water diversion. Dam operation and gravel mining have produced considerable modifications in the natural sediment regime generating important morphological channel responses (narrowing and incision). Large areas of the former active channel have been colonized by riparian vegetation, both as islands and as marginal woodlands. Overall, the river changed its morphological pattern from braided to wandering. The present study analyses the timing and extent of the planform morphological changes that occurred over the last 30 years along the middle portion of the river (20 km long) through the examination of aerial photos, repeated topographic measurements and hydrological data. A series of recent aerial photos (1981, 1990, 1994, 1999, 2003, 2006, 2008, 2010 and 2011) have been used to assess the medium and short‐term morphological changes of the floodplains and the active channel area. As to the medium‐term modification, the recent changes in in‐channel gravel mining have determined a new trend of active channel widening through erosion of vegetated areas. The analysis has also allowed to assess the morphological effect of single flood events. Only floods with recurrence interval higher than 8–10 years appear to be able to determine substantial erosion of floodplain and island margins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Riparian forest vegetation is widely believed to protect riverbanks from erosion, but few studies have quantified the effect of riparian vegetation removal on rates of river channel migration. Measured historical changes in a river channel centreline, combined with mapped changes in floodplain vegetation, provide an opportunity to test how riparian vegetation cover affects the erodibility of riverbanks. We analysed meander migration patterns from 1896 to 1997 for the central reach of the Sacramento River between Red Bluff and Colusa, using channel planform and vegetation cover data compiled from maps and aerial photography. We used a numerical model of meander migration to back‐calculate local values for bank erodibility (i.e. the susceptibility of bank materials to erosion via lateral channel migration, normalized for variations in near‐bank flow velocities due to channel curvature). A comparison of migration rates for approximately 50 years before and after the construction of Shasta dam suggests that bank migration rates and erodibility increased roughly 50%, despite significant flow regulation, as riparian floodplains were progressively converted to agriculture. A comparison of migration rates and bank erodibilities between 1949 and 1997, for reaches bordered by riparian forest versus agriculture, shows that agricultural floodplains are 80 to 150% more erodible than riparian forest floodplains. An improved understanding of the effect of floodplain vegetation on river channel migration will aid efforts to predict future patterns of meander migration for different river management and restoration scenarios. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Effective river restoration aims for the recovery of ecosystem functions by restoring processes and connectivity to the floodplain. At the straightened lowland river Stör in northern Germany, a sequence of 15 new meanders was created in 2008, with wavelengths up to 70 m. The newly created areas within the meander bends range in size from 215 to 1,115 m2 and function as a series of 15 restored floodplain sites, which are subject to succession. After 7 years of restoration measures, we investigated the vegetation dynamics on the (a) restored floodplains and compared them with adjacent floodplain sites that were used as (b) low‐intensity grazed grassland or as (c) abandoned grassland. We analysed the species diversity, functional vegetation parameters, and plant communities of 200 plots within the floodplain area of the three floodplain types and of 246 plots at their river banks. Plant species diversity and composition differed with respect to restoration measure and site management. Restored floodplains revealed a higher coverage in species of wet grasslands and softwood forests and higher species diversity than abandoned grasslands. Grazed grasslands showed the highest species number and coverages of pioneer vegetation. The banks indicated fewer differences in species composition between floodplain types. The construction of restored floodplains revealed greater overall plant diversity due to promoting the development of typical floodplain vegetation. Shallow meanders with increased flooding intensity and the creation of a varying microreliefs are recommended as combined river/floodplain measures in order to foster processes and connectivity between valley components.  相似文献   

16.
Dams may impact the health of downstream riparian vegetation communities through flow modifications such as decreased flood frequency and duration. Without historical vegetation data, however, it is difficult to relate changes in vegetation composition to hydrology patterns downstream of dams. We studied bottomland hardwood forests downstream of Toledo Bend Dam on the Sabine River in Texas and Louisiana to determine their sensitivity to minor changes in river hydrology with a particular focus on floods. Current riparian vegetation was characterized within three topographic zones at three selected sites below the dam. Using 80 years of hydrologic records from two gauging stations downstream of the dam, we evaluated trends in flood frequency, flood duration, peak discharge and total flood discharge in those periods before (1926?1965) and after (1971?2005) dam construction, as well as related flood stage to floodplain elevations to link topography to flood frequency. Plant species diversity in this system is highly dependent on minor changes in elevation, and the proportion of wetland‐dependent species changes rapidly with only a few centimeters difference in elevation. Although 50% of trees, shrubs and herbs in the sloughs were wetland adapted, their numbers were only 21% in the levees (74–284 cm higher in elevation) and 14% in the mid‐floodplains. Since dam construction, total flood discharge and duration at the most upstream gauge on the Sabine River decreased by 49%. At both gauges, mean discharge was also altered with higher summer flows. Patterns of tree regeneration point to less recruitment by wetland‐dependent species in the years following dam construction. These results suggest that minor changes in flood magnitude might limit occurrence of wetland species to the lowest topographic zones and illustrate the need to analyse sensitivity of plants to minor changes in flood characteristics when historical data for the vegetation community are lacking. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Multi‐annual contemporary flood event overbank sedimentation rates were quantified on the World's third largest river in terms of discharge, the tropical lower Orinoco. We discuss the role of variables at the basin and reach scales that contributed to the complexity of spatio‐temporal overbank sediment deposition patterns. Monitored in situ plots were characterized by distance to the main channel, hydroperiod, different geomorphological units, and vegetation cover. Flood event sedimentation rates showed a high spatial variability ranging from the absence of sediment deposition up to 225.46 kg m‐2 yr‐1. Banks and levees received relatively high amounts of sediment (39.6 kg m‐2 yr‐1), whereas observed mean sedimentation rates on the more distant floodplain and backswamps tended to be lower (17.7 kg m‐2 yr‐1). Significant differences in sedimentation rates were observed in two major vegetation types: dense herbaceous and shrubby vegetation (42.2 kg m‐2 yr‐1) and floodplain forest (12.7 kg m‐2 yr‐1). However, overbank sedimentation patterns also reflected imbricated hydrosedimentary and biogeomorphological vegetation feedbacks that co‐construct fluvial landforms. The incidence of an El Niño–Southern Oscillation–La Niña episode during the study period on sediment availability and floodplain sedimentation suggests that within whitewater rivers, where suspended sediment concentrations are naturally high, hydrological connectivity seems to be more important for floodplain sedimentation than variations in suspended sediment concentrations. These results may provide a good basis for future biogeomorphological investigation projects using complementary methodologies, in order to better anticipate global change and fluctuations in the occurrence, strength or duration of El Niño–La Niña episodes in the tropical zone and their consequences for flood discharge and sediment dynamics during channel–floodplain exchanges.  相似文献   

18.
Flow regulation and water abstractions may change the complex relationship between river hydraulics, morphology, and riparian vegetation. As a result, rivers are likely to decrease their dynamics, increase the amount of vegetation, and modify their habitat structure. Flood events provide a natural mechanism for removal of invasive vegetation and recreation of natural floodplain habitats. This work aims at evaluating and quantifying how gravel‐bed braided rivers naturally control vegetation encroachment through morphological processes and the impact of both naturally occurring and induced avulsions. Flume experiments were conducted in a 24‐m‐long x 1.6‐m‐wide channel filled with well‐sorted sand and constant longitudinal gradient at 0.01 m/m. Once a braided network developed, the flume was seeded with Eruca sativa at a density of 1.5 seeds/cm2 and grown until an approximate height of 1.1 cm. Experiments evaluated low‐, medium‐, and large‐flood events and documented morphological changes and impacts to vegetation at four intervals during the experiments. High‐resolution images captured approximately 3 m above the flume were used to produce accurate Structure‐from‐Motion‐derived topography and orthoimagery (average errors 2 mm). Vegetation dynamics were observed to be highly variable and depend on local morphological changes and bank erosion. Discharge is the first‐order control on vegetation removal, but our results show that occurrence of avulsions significantly increases vegetation removal. The experiments highlight that a relatively small amount of sediment relocation can be an effective tool to induce avulsions and reduce vegetation encroachment on regulated rivers.  相似文献   

19.
Changes in the hydrological regime affect the phenomenon of invasion by plant species along riparian systems. The dynamics of exotic (non-native) and native species were examined at five sites that differed in exposure to hydrological disturbance (floods) during three consecutive years (medium, wet and dry years). When considering the disturbance gradient, exotic plants were favoured by direct exposure to floods (main channel) and by high flood frequencies. The response to year to year changes in hydrology was rapid for both native and exotic communities. However, the exotic plants responded more rapidly and were favoured by a dry year. A general framework including human and natural factors involved in invasions by exotic plants along rivers is presented.  相似文献   

20.
To understand the influence of dams on connectivity of riparian plant communities along rivers, we examined plant dispersal by water (hydrochory) and riparian plant community attributes upstream and downstream from dams on two rivers in the southern Rocky Mountains, Colorado, USA. Drifting plant propagules were collected from the water column along reaches upstream and downstream from dams to examine the longitudinal and temporal variation in seed‐pool species composition and concentration of water‐transported seeds. Similarities between species composition of the hydrochoric seed pool and local standing riparian vegetation were used to evaluate the degree of longitudinal connectivity along river corridors and to isolate the relative contributions of local versus regional species pools to hydrochoric species composition. Furthermore, several synthetic attributes (longevity, origin, life‐form and dispersal mode) and species composition of riparian plant communities were examined to explore the effects of interrupted propagule dispersal on standing vegetation. We estimated that as many as 120 million seeds were transported via hydrochory along free‐flowing reaches of the Rocky Mountain streams in a single growing season. Seed concentration (seeds/m3) in the water column was reduced by 70–94% along reaches downstream from dams compared to free‐flowing reaches. The similarity in species composition of hydrochoric seeds and local standing vegetation was nearly two times greater downstream from reservoirs compared to upstream. This suggests that hydrochory complements local species pools by importing seeds from throughout the upstream catchment area along free‐flowing river reaches, but that hydrochoric seeds are derived primarily from local sources along regulated river reaches. Species richness recovers as a function of downstream distance from contributions of standing vegetation and seeds from tributary streams. Hydrochory may extend the period over which viable seeds of a parent population are dispersed. Even after dispersal of parent populations has terminated, seeds may continue to be available due to residence time in water transport. This extension of the ‘effective dispersal window’ of some species may exceed two weeks or more and may influence the likelihood of successful establishment. In this study, synthetic attributes of riparian vegetation did not differ significantly between free‐flowing and regulated reaches, whereas formal statistical comparisons of community composition upstream and downstream from reservoirs indicate that there are differences in community composition upstream and downstream from dams. These findings suggest that the consequences of 50 to 100 years of fragmentation result in community‐wide effects along Rocky Mountain streams and that these effects may be partially explained by dam‐caused disruption in connectivity of plant populations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号