首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Dam releases used to create downstream flows that mimic historic floods in timing, peak magnitude and recession rate are touted as key tools for restoring riparian vegetation on large regulated rivers. We analysed a flood on the 5th‐order Green River below Flaming Gorge Dam, Colorado, in a broad alluvial valley where Fremont cottonwood riparian forests have senesced and little recruitment has occurred since dam completion in 1962. The stable post dam flow regime triggered the development of novel riparian communities with dense herbaceous plant cover. We monitored cottonwood recruitment on landforms inundated by a managed flood equal in magnitude and timing to the average pre‐dam flood. To understand the potential for using managed floods as a riparian restoration tool, we implemented a controlled and replicated experiment to test the effects of artificially modified ground layer vegetation on cottonwood seedling establishment. Treatments to remove herbaceous vegetation and create bare ground included herbicide application (H), ploughing (P), and herbicide plus ploughing (H + P). Treatment improved seedling establishment. Initial seedling densities on treated areas were as much as 1200% higher than on neighbouring control (C) areas, but varied over three orders of magnitude among the five locations where manipulations were replicated. Only two replicates showed the expected seedling density rank of (H + P) > P > H> C. Few seedlings established in control plots and none survived 1 year. Seedling density was strongly affected by seed rain density. Herbivory affected growth and survivorship of recruits, and few survived nine growing seasons. Our results suggest that the novel plant communities are ecologically and geomorphically resistant to change. Managed flooding alone, using flows equal to the pre‐dam mean annual peak flood, is an ineffective riparian restoration tool where such ecosystem states are present and floods cannot create new habitat for seedling establishment. This problem significantly limits long‐term river and riparian management options. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
    
Riparian zones represent an important ecosystem providing a range of functions and services important to humans—for example, biodiversity support, a reduction in erosion risk, or the transport of pollutants from the surrounding landscape to watercourses. At the same time, it is an environment that has been often subjected to significant pressure during the agricultural cultivation of the landscape or the development of industrial and residential activities of human society. Thus, a large number of riparian ecosystems have been disappeared or degraded. The assessment of the overall ecological status of riparian habitats constitutes an important source of information for watercourse management and landscape planning, the aim of which should be to maintain good status or to improve the current unsatisfactory state of these habitats. However, in order to reliably evaluate the current ecological status of the landscape, it is necessary to have information on the reference status, that is, a potentially natural status that would prevail without human influence. For this purpose, a methodology that can determine the potential natural status of riparian zones for Central European conditions was developed. In this study, it was found that approximately a quarter (26%) of all river basins in the Czech Republic reach very low environmental values of the potential natural status of riparian zones and, conversely, approximately 29% of river basins are expected to develop significantly above average riparian zone quality.  相似文献   

3.
    
The species composition of riparian vegetation is determined by a variety of processes, including the dispersal of seeds. The seed types that end up at certain locations are determined by their particular characteristics as well as the prevailing hydrology and the physical characteristics of the river channel. A conceptual model is proposed to identify the hydraulic processes involved in the hydrochory pathway that may lead to differential response of different seed types and hence their sorting. The results of a series of laboratory experiments are presented to demonstrate the sorting between seed types by these processes. The behaviour of non‐buoyant seeds during settling and entrainment is shown to be consistent with that of mineral sediments, and their sorting can therefore be described by existing sediment transport theory. Significant sorting of buoyant seed types takes place during transport under the influence of wind and during ingress into marginal emergent vegetation, trapping by vegetation and stranding during receding flows on sloping channel banks. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
    
Rivers and their floodplains worldwide have changed dramatically over the last century because of regulation by dams, flow diversions and channel stabilization. Floodplains no longer inundated by river flows following dam‐induced flood reduction comprise large areas of bottomland habitat, but the effects of abandonment on plant communities are not well understood. Using a hydraulic flow model, geomorphic mapping and field surveys, we addressed the following questions along the Bill Williams River, Arizona: (i) What per cent of the bottomland do abandoned floodplains comprise? and (ii) Are abandoned floodplains quantitatively different from adjacent xeric and riparian surfaces in terms of vegetation composition and surface sediment? We found that nearly 70% of active channel and floodplain area was abandoned following dam installation. Abandoned floodplains along the Bill Williams River tend to be similar to each other yet distinct from neighbouring habitats: they have been altered physically from their historic state, leading to distinct combinations of surface sediments, hydrology and plant communities. Abandoned floodplains may transition to xeric communities over time but are likely to retain some riparian qualities as long as there is access to relatively shallow ground water. With expected increases in water demand and drying climatic conditions in many regions, these surfaces and associated vegetation will continue to be extensive in riparian landscapes worldwide. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
    
During the early 1990s a multi‐component research programme was initiated by the Northern River Basins Study (NRBS) in Canada to answer the question: How does and how could flow regulation affect the aquatic ecosystem? Research focused on the major headwaters of the Mackenzie River, the Peace and Slave rivers, which became regulated in 1968 by the W.A.C. Bennett Dam in the Rocky Mountains. The lack of knowledge about the hydroecology of large northern rivers as well as a paucity of data for this relatively isolated basin required that studies be undertaken to assess how flow regulation had modified the physical template of this system. Research focused on quantifying the regulation effects on the flow regime, ice conditions, fluvial geomorphology and riparian vegetation of the Peace and Slave rivers and the Slave River Delta. Results of the NRBS studies indicate that regulation of the Peace River has shifted the pattern of seasonal flows and damped flow extremes creating a less variable annual regime. Increased winter releases from the reservoir have virtually eliminated the formation of a complete winter ice cover for a significant distance below the dam and delayed ice‐cover formation farther downstream. Higher ice levels that accompany increased winter flows are thought to affect the frequency and magnitude of ecologically important ice‐induced floods that occur during the spring. Although more difficult to link solely to the effects of flow regulation, pronounced morphologic and vegetation changes have been observed along the Peace River, including channel narrowing via the abandonment of secondary/backwater channels and in‐channel shoaling along the lower reaches. Vegetation succession has been especially evident on abandoned bar surfaces. Morphological changes were also observed in the Slave River Delta, particularly along the ecologically sensitive outer margin of the delta. Copyright © 2002 Environment Canada. Published by John Wiley & Sons, Ltd.  相似文献   

6.
To explore how high flows limit the streamward extent of riparian vegetation we quantified the effects of sediment mobilization and extended inundation on box elder (Acer negundo) saplings along the cobble‐bed Gunnison River in Black Canyon of the Gunnison National Monument, Colorado, USA. We counted and aged box elders in 144 plots of 37.2 m2, and combined a hydraulic model with the hydrologic record to determine the maximum shear stress and number of growing‐season days inundated for each plot in each year of the record. We quantified the effects of the two mortality factors by calculating the extreme values survived during the lifetime of trees sampled in 1994 and by recounting box elders in the plots following a high flow in 1995. Both mortality factors can be modeled as threshold functions; box elders are killed either by inundation for more than 85 days during the growing season or by shear stress that exceeds the critical value for mobilization of the underlying sediment particles. Construction of upstream reservoirs in the 1960s and 1970s reduced the proportion of the canyon bottom annually cleared of box elders by high flows. Furthermore, because the dams decreased the magnitude of high flows more than their duration, flow regulation has decreased the importance of sediment mobilization relative to extended inundation. We use the threshold functions and cross‐section data to develop a response surface predicting the proportion of the canyon bottom cleared at any combination of flow magnitude and duration. This response surface allows vegetation removal to be incorporated into quantitative multi‐objective water management decisions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
    
Woody riparian vegetation provides numerous ecological benefits such as stabilizing streambanks, storing and cycling nutrients, shading streams and providing habitat for wildlife. However, vegetation also increases hydraulic roughness and reduces the effective flow area, resulting in an increased water surface elevation for a given streamflow. Balancing the desire to preserve woody vegetation in stream corridors with the need to manage flood risks requires accurate techniques for predicting the influence of vegetation on stream hydraulics. However, this is a challenging problem because woody vegetation responds to the flow field itself by bending and streamlining in response to hydraulic forces. The goal of this study was to predict the bending behaviour of woody riparian vegetation as a function of hydraulic flow conditions. Field tests were performed to elucidate tree biomechanical properties for select riparian taxa of the southwestern USA. Biomechanical results served as input parameters for a numerical algorithm designed to predict tree bending for water velocities likely to be encountered during flood events. Bending simulations revealed appreciable variability in bent tree heights. Variability was likely a manifestation of the extensive variance in plant characteristics and properties inherent in biological specimens. However, no trees were expected to bend to a height lower than approximately 42% of their original height, even in water moving at 2.5 m·s‐1. The results of this work provide an important first step in an effort to predict a dynamic hydraulic roughness for vegetated channels and floodplains under flood conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Critical to restoring the nature conservation value of many river corridors is an understanding of how alluvial landscapes will respond to cessation of river management and land use practices that have previously degraded the environment. This paper analyses changes in valley floor landforms and vegetation patch dynamics, in relation to fluvial disturbance, over a period of almost 100 years following flood embankment abandonment on a wandering gravel‐bed river, namely the River Tummel, Scotland. Such rivers were once typical of many draining upland areas of northern maritime Europe. Prior to abandonment the valley floor landscape was agriculturally dominated and the river for the most part was single thread confined between flood embankments. The pattern of landform change and vegetation patch development over time following a decision in 1903 not to maintain embankments was tracked by geomorphic and land cover mapping utilizing successive sets of aerial photography for the period 1946 to 1994. A historical context for these changes was also feasible because the channel planform in 1900 and earlier channel planform changes dating back to 1753 were known due to the availability of old maps and earlier geomorphic studies. The land cover mapping was validated by comparison of results produced from the interpretation work on the 1994 aerial photographs with the field‐based UK National Vegetation Classification protocol. The findings of the study illustrate that bordering the River Tummel fluvial landforms and vegetation patch mosaics, presumably resembling those that occurred before valley floor land use intensification, evolved in less than 50 years after flood embankment abandonment with a resultant increase in habitat diversity. The change relates primarily to flood‐induced channel planform change and moderate levels of fluvial disturbance. The general significance of this change to plant species diversity on the valley floor of the River Tummel and elsewhere is discussed as is possible implications of the upstream impoundment and scenarios for climatically induced changes in flood frequency and magnitude. The overall outcome is the strong possibility that simple changes in river management and land use practices could result in re‐establishment of the nature conservation value of similar river corridors in Europe over the medium term without active restoration efforts. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

The fluvial processes are considerably complicated in the braided reach of the Lower Yellow River, and the lateral or transverse channel deformation process is especially pronounced. The state-of-the-art of simulation techniques for the channel deformation in the Lower Yellow River was analyzed in this paper, and such a conclusion was drawn that existing mathematical alluvial models only can simulate the longitudinal channel deformation and cannot simulate such the lateral deformation as lateral erosion and failure of bank. Then a new two-dimensional (2D) composite model was developed herein, consisting of a 2D flow and sediment transport submodel and a riverbank-erosion submodel. This model not only can simulate the longitudinal and lateral channel deformations, but also can be used to simulate the fluvial processes of natural alluvial rivers with complex bed morphology. Through using the proposed composite model, the flood routing and channel deformation processes during the August 1982 flood were simulated. The maximum stage along the reach and the discharge hydrograph at the outlet so obtained were in good agreement with the observed data. Simulated results of the channel deformation processes showed that during the flood season, the main channel scours and the flood plain deposits; during the dry season, the main channel deposits and banks of the floodplain retreat due to lateral erosion by the flow and failure under gravity. Such results accord with the annual varying law of bed scouring and deposition in the braided reach.  相似文献   

10.
11.
简要介绍了近50年来,长江河道水流泥沙运动、河道演变、河道整治及水利枢纽泥沙问题研究情况与所取得的进展,提出了需要继续深入研究的若干重大问题,包括长江水土资源综合利用、干支流水库群联合运用对水沙及江湖演变的影响与对策、长江中下游河道和湖泊及长江口治理研究等。  相似文献   

12.
黄河下游河道萎缩模式研究   总被引:6,自引:0,他引:6  
依据河工模型试验和原型定位观测资料分析,研究了黄河下游河道萎缩的基本模式及河道萎缩与水沙过程的跟随性。结果表明,河道萎缩模式主要有“滩槽并淤”和“集中淤槽”两大类,同时,还存在着“淤积不萎缩”的造床现象;对于某一变异水沙过程,河道萎缩具有“前置”性,而且,河道萎缩并不需要在很长的时期内才可完成,一个汛期内就可能发生明显萎缩;主河槽过流面积、主河槽河床平均高程是判别河道萎缩的必要因子,而断面宽深比不是必要因子。  相似文献   

13.
    
As global climate change affects recharge and runoff processes, stream flow regimes are being altered. In the American Southwest, increasing aridity is predicted to cause declines in stream base flows and water tables. Another potential outcome of climate change is increased flood intensity. Changes in these stream flow conditions may independently affect vegetation or may have synergistic effects. Our goal was to extrapolate vegetation response to climate‐linked stream flow changes, by taking advantage of the spatial variation in flow conditions over a 200 km length of the San Pedro River (Arizona). Riparian vegetation traits were contrasted between sites differing in low‐flow hydrology (degree of stream intermittency) and flood intensity (stream power of the 10‐year recurrence flood). Field data indicate that increased stream intermittency would cause the floodplain plant community to shift from hydric pioneer trees and shrubs (Populus, Salix, Baccharis) towards mesic species (Tamarix). This shift in functional type would produce changes in vegetation structure, with reduced canopy cover and shorter canopies at drier sites. Among herbaceous species, annuals would increase while perennials would decrease. If flood intensities increased, there would be shifts towards younger tree age, expansion of xeric pioneer shrubs (in response to flood‐linked edaphic changes), and replacement of herbaceous perennials by annuals. Woody stem density would increase and basal area would decrease, reflecting shifts towards younger forests. Some effects would be compounded: Annuals were most prevalent, and tree canopies shortest, at sites that were dry and intensely flooded. Vegetational changes would feedback onto hydrologic and geomorphic processes, of importance for modeling. Increased flood intensity would have positive feedback on disturbance processes, by shifting plant communities towards species with less ability to stabilize sediments. Feedbacks between riparian vegetation and stream low‐flow changes would be homeostatic, with reduced evapotranspiration rates ameliorating declines in base flows arising from increased aridity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
    
Research in fluvial biogeomorphology largely aims to promote our understanding of the interactions between riparian vegetation and fluvial morphodynamics within riverine ecosystems. Starting at the end of the last century, Angela M. Gurnell has made a major contribution to fluvial geomorphology by considering water flow and sediment transport in combinaton with riparian and later also aquatic vegetation and thus significantly promoting the fluvial biogeomorphological approach from its early days until today. The objective of the present paper is to present a set of studies and results obtained over the last 20 years mainly by the authors and many collaborators, including Angela M. Gurnell, on a panel of French rivers: the Tech, Garonne, Isère and Allier. In particular, feedback mechanisms between fluvial morphodynamics and riparian vegetation dynamics were investigated directly in the field and by using high-resolution remote sensor systems at the scale of individual plants, populations, communities and landscapes as well as during semi-controlled ex-situ experiments at the scale of individual plants. Collectively, the authors' research conducted over the past 20 years has helped to elucidate some key aspects of the feedback dynamics between the lowest and highest levels of the riparian ecosystem organization. This article reviews and discusses those key aspects. The gradually obtained results have contributed to a better understanding and quantification of feedback between river morphodynamics and vegetation at nested spatiotemporal scales, from plant species traits to the riverine landscape. Furthermore, the biogeomorphological approach advocated for more than 20 years now has clearly facilitated the extension of the discipline of geomorphology to ecology in general and evolutionary ecology in particular and thus contributed to a more integrative vision of earth surface processes.  相似文献   

15.
新情势下黄河口演变与整治研究思路   总被引:4,自引:2,他引:4  
基于黄河口水沙变异的新情况以及经济发展和生态环境建设的新需求,提出新情势下黄河口演变与整治的研究思路。针对目前研究中需要突破的薄弱环节,瞄准国际河口学领域中的前沿问题,采用多学科交叉和多种研究手段,对黄河口开展创新研究。主要研究:黄河口水沙变异特征,尾闾河道枯萎机制及其演变响应,拦门沙演变响应过程及其反馈影响;河口泥沙通量,最大浑浊带、泥沙异重流形成机理,河口海岸淤进、蚀退及其动力平衡机制;黄河口陆海相互作用的整体数模,河口演变趋势与入海流路使用年限;新情势下黄河口治理对策及水土资源优化配置。  相似文献   

16.
    
The effects of river damming on geomorphic processes and riparian vegetation were evaluated through field studies along the regulated Green River and the free‐flowing Yampa River in northwestern Colorado, USA. GIS analysis of historical photographs, hydrologic and sediment records, and measurement of channel planform indicate that fluvial processes and riparian vegetation of the two meandering stream reaches examined were similar prior to regulation which began in 1962. Riparian plant species composition and canopy coverage were measured during 1994 in 36, 0.01 ha plots along each the Green River in Browns Park and the Yampa River in Deerlodge Park. Detrended correspondence analysis (DCA) of the vegetation data indicates distinctive vegetation differences between Browns Park and Deerlodge Park. Canonical correspondence analysis (CCA) indicates that plant community composition is controlled largely by fluvial processes at Deerlodge Park, but that soil chemical rather than flow related factors play a more important role in structuring plant communities in Browns Park. Vegetation patterns reflect a dichotomy in moisture conditions across the floodplain on the Green River in Browns Park: marshes with anaerobic soils supporting wetland species (Salix exigua, Eleocharis palustris, Schoenoplectus pungens, and Juncus nodosus) and terraces having xeric soil conditions and supporting communities dominated by desert species (Seriphidium tridentatum, Sarcobatus vermiculatus, and Sporobolus airoides). In contrast, vegetation along the Yampa River is characterized by a continuum of species distributed along a gradual environmental gradient from the active channel (ruderal species such as Xanthium struminarium and early successional species such as S. exigua, Populus deltoides subsp. wislizenii, and Tamarix ramossissima) to high floodplain surfaces characterized by Populus forests and meadow communities. GIS analyses indicate that the channel form at Browns Park has undergone a complex series of morphologic changes since regulation began, while the channel at Deerlodge Park has remained in a state of relative quasi‐equilibrium with discharge and sediment regimes. The Green River has undergone three stages of channel change which have involved the transformation of the historically deep, meandering Green River to a shallow, braided channel over the 37 years since construction of Flaming Gorge Dam. The probable long‐term effects of channel and hydrologic changes at Browns Park include the eventual replacement of Populus‐dominated riparian forest by drought tolerant desert shrublands, and the enlargement of in‐channel fluvial marshes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Plant communities and dynamics can be characterized according to species composition or plant traits. Here, we used species composition and plant traits to compare their effectiveness in discriminating the biogeomorphological (involving reciprocal feedbacks between physical and biological processes) and ecological (mainly biologically driven) phases of the fluvial biogeomorphological succession (FBS) model. The comparison was done between two French rivers, the largely unchannelized lower Allier and the channelized middle Garonne. One reach representative of each river section was selected for the study. Within each river reach, we chose two contrasted study sites in terms of channel and floodplain dynamics: a reference site (least altered channel and floodplain dynamics) and an altered site (laterally stabilized by riprap and constrained). In the four study sites, we sampled vegetation in 402 plots of 4 m2. The 512 species identified in the plots were characterized in terms of plant traits (20) from a literature review. When comparing reaches in unconstrained ordinations and permutational multivariate analyses of variance, both species composition and plant traits led to a similar identification of the biogeomorphological and the ecological successional trajectories. Nevertheless, the trait approach was less influenced by local and regional bioclimatic, hydrogeomorphological, and anthropogenic settings and thus produced a more comprehensive and general classification of the biogeomorphological and ecological phases of the FBS model. A lower than expected contrast between the four sites was found, because neither species composition nor plant traits could entirely characterize distinct successional trajectories occurring in our reference or altered sites. Furthermore, our results contributed to a better understanding of the multiple successional trajectories that can occur in midlatitude river corridors. It also showed that relating plant traits to their effects on fluvial landform dynamics remains a core challenge in explaining succession including feedback mechanisms between hydrology, morphodynamics, and vegetation dynamics.  相似文献   

18.
略论二级悬河   总被引:3,自引:0,他引:3  
悬河是指河床明显高出河流堤防背河侧地面的河流(或河段),又称地上河,它具有水位常年高于背河侧地面、河势多变、防洪工程自行降低标准、堤防决口后灾害严重、一旦堤防决口可能造成改道等特点。二级悬河是指河槽平均河底高程高于滩地平均河底高程的河流(或河段),黄河下游20世纪70年代初开始形成二级悬河。平原堆积性河流,河床不断淤积抬高,存在滩面横比降;悬河,具有平原堆积性河流的特点,且河床明显高于河流堤防背河侧地面;二级悬河由悬河淤积而成,除具有堆积性河道、悬河的特点外,就断面形态而言,还应同时具有滩面横比降陡、滩唇高程远高于堤防临河侧附近滩面高程、河槽平均河底高程高于滩地平均河底高程的特点。  相似文献   

19.
汉江河口段航道整治工程以疏浚、清障为主,辅以必要的护岸、护滩、填挖槽等工程措施,本文采用河道演变分析和一、二维水流数学模型计算,研究了该航道整治工程的效果及其对河道行洪的影响,并优化了工程方案.研究表明:(1)丹江口水库自1968年正式蓄水以来,汉江河口段河道总体冲刷下切,年内洪淤枯冲;影响河道演变的主要因素有:丹江口水库、长江与汉江顶托和天然节点与人工护岸等.(2)航道整治工程实施后.汉江河口段上段流速趋于减小,下段流速趋于增加;河道流速分布趋于均化.(3)航道整治工程对河道行洪的影响有限,最大洪水壅高9.4cm,优化方案的最大洪水壅高7.0cm.  相似文献   

20.
    
In an era of big‐data acquisition and semiautomation of geomorphic river surveys, it is timely to consider how to better integrate this into existing and widely used conceptual frameworks and approaches to analysis. We demonstrate how Stage 1 of the River Styles Framework, which entails identification and interpretation of river character and behavior, patterns and controls, can be used as a “powerboard” into which available, developing and future semiautomated tools and workflows can be plugged (or unplugged). Prospectively, such approaches will increase the efficiency and scope of analyses, providing unprecedented insights into the diversity of rivers and their morphodynamics. We appraise the role of human decision‐making in conducting expert‐manual analyses and interpretations. Genuine integration of big‐data analytics, remote‐sensing based tools for semiautomated river analysis with expert‐manual interpretations including field insights, will be an essential ingredient to fully exploit emerging computational and remote sensing technologies to advance our understanding of river systems, to translate information into knowledge, and raise the standards of practice in river science and management. This article is categorized under: Water and Life > Conservation, Management, and Awareness Water and Life >Methods Engineering Water > Planning Water Engineering Water > Sustainable Engineering of Water  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号