首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Historically, perceived increases in erosion and flooding levels have been attributed to in‐stream wood and used to justify its removal from streams and rivers around the world. More recently, recognition of the adverse morphological and biological impacts caused by this removal has led to rehabilitation projects that actively reintroduce wood to streams. However, a perception remains amongst some members of the general community that wood additions increase the likelihood of flooding and erosion in the target streams. To test whether there was a basis for this perception, we experimentally added wood to eight streams across southwest Victoria and Gippsland, Australia. The velocity, stage and bed and bank erosion rates were compared with those of unaltered reaches. We detected localized changes in the velocity and stage parameters but that these were unlikely to operate at the reach‐scale. Bed erosion rates, where maximum erosion was assumed if pins were not recovered, showed increased erosion due to wood additions but this was not supported by channel shape analyses, which identified short‐term increases in the variability of the channel shape, followed by longer‐term stability at treatment sites. We found no clear evidence of increased longer‐term rates of erosion or flooding associated with the introduction of wood to streams over the 18‐month study period. It remains important to carefully design rehabilitation works, but the lack of adverse effects on stream morphology and increased variability of the in‐stream environment suggests improved habitat diversity, supporting the use of wood addition as a stream rehabilitation technique. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Large wood, both live and dead, is essential for producing complex habitat in many streams, especially in forested watersheds that support salmonid populations. The addition of engineered wood structures is a common approach taken in many streams where past watershed management practices have resulted in reduced wood loading. We examined six 300‐m stream reaches in the Lagunitas Creek watershed, Northern California, to determine (i) the distribution of large wood in the bankfull channel and 10‐year floodplain, (ii) the influence of large wood on the size and distribution of pools and (iii) whether streams with engineered wood structures had greater diversity of pool habitat to support salmonid populations. We found that the amount of large wood in the bankfull channel and the amount available for recruitment from the 10‐year floodplain were highly variable among and within reaches examined and largely dependent on the local geomorphic setting. Stream reaches with engineered wood structures had elevated pool frequencies relative to reaches without these structures, suggesting a higher capacity to support salmonids during critical life stages. Among large wood pieces that had a strong influence on pool formation, 23% had an attached root wad and 66% were part of a cluster. All of the study reaches we examined had lower volumes of large wood in their bankfull channels than similar stream types with natural wood‐loading levels, suggesting that increased additions of large wood could provide ecosystem benefits over time. These principles can be understood and transferred effectively to other watersheds using a framework of wood‐loading process domains. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The recruitment of wood from the riparian zone to rivers and streams provides a complex habitat for aquatic organisms and can influence both aquatic biodiversity and ecosystem function. The Daly River in the wet–dry tropics of northern Australia is a highly seasonal, perennially flowing sand‐bed river where surveys of river wood aggregations at the reach scale (~2 km) in 2008 and 2009 recorded densities of 37–78 km?1 and identified distinct types of river wood aggregations: key pieces, standing trees, fallen trees, wrack and single pieces. After larger than average flows in the 2008/2009 wet season, between 46% and 51% of the surveyed river wood had moved. The distribution of wood age classes indicated continual recruitment and slow turnover of wood within the river. Surveys of fish and habitat characteristics at the mesohabitat scale (~100 m) showed fish species richness; diversity and fish abundance were not correlated to the proportion of wood present. Fish assemblage structure was associated with wood cover as well as other environmental variables such as stream width and depth. The importance of in‐stream wood also varied for different species and age classes of fish. This study documents the dynamic nature of river wood aggregations and their complex and variable distribution and suggests their importance as fish habitat in this tropical river. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Riparian vegetation development and macroinvertebrate assemblages were studied in 16 streams formed between 35 and 230 years ago, following glacial recession in Glacier Bay National Park, southeast Alaska. Riparian vegetation established most rapidly in streams where flow variation in downstream reaches was buffered by a lake. Riparian vegetation development was positively correlated with lower bank stability, but was independent of stream age. Roots and branches of riparian vegetation trailing into streams (trailing riparian habitat—TRH) were shown to be an important habitat for a number of macroinvertebrate taxa. In young and unstable streams, TRH was colonized mainly by Plecoptera whereas in more stable lake‐influenced streams Simuliidae dominated. Significant coarse woody debris (CWD) accumulations were not observed until after approximately 130 years of stream development had occurred when certain channel features, such as gravel bars, were stabilized by dead wood. Where dead wood was present, opportunistic wood taxa were abundant, even in the younger streams. However, a xylophagous species, Polypedilum fallax, was not recorded until streams were over 100 years old. Two‐way indicator species analysis (TWINSPAN) using presence/absence of macroinvertebrate taxa on TRH, initially divided streams into lake and non‐lake systems, but subsequent divisions were consistent with differences in stream age. TWINSPAN of macroinvertebrate assemblages on dead wood again highlighted differences in stream age. Canonical correspondence analysis indicated that bed stability and stream age were the most important environmental variables influencing macroinvertebrate distribution on TRH. Trailing riparian habitat was most abundant in moderately unstable streams where it facilitates invertebrate colonization. CWD contributes markedly to channel stabilization, provides habitat for invertebrate xylophages, and confers additional habitat complexity. Maximum levels of CWD are predicted to occur in non‐lake streams after approximately 300 years, but at least a further 100 years will be required in stable streams below lakes where dead wood entrainment is not enhanced by flooding, channel migration and bank undercutting. A conceptual model summarizing the role of TRH and CWD on stream development in Glacier Bay is presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
To determine whether large wood (LW, ≥1‐m length, ≥10‐cm diameter) plays a role in Chinook salmon (Oncorhynchus tshawytscha) redd (i.e. egg nest) placements in a regulated, Mediterranean‐climate, medium‐sized river (where channel width is less than the upper quartile of length of potential instream wood pieces), characteristics of 527 large wood pieces, locations of 650 redds, and mesohabitat delineations (riffle, run, glide, pool) were collected during a spawning season along a 7.7 km reach directly below Camanche Dam on the Mokelumne River, CA. LW was regularly distributed across the study reach an average 70 LW pieces km‐1. Some LW clustering was evident at islands and meander bends. Spawners built 85% of redds within one average channel width (31 m) of LW. Spawners utilized LW within a 10 m radius 36% of the time in the upper 3 km rehabilitated reach, and 44% of the time in the lower 4.7 km marginal habitat reach. A greater percentage of LW was utilized in riffles in the upper 3 km reach where 90% of redds were built, while a larger percentage of spawners used LW in riffles in the lower 4.7 km reach. LW‐redd interactions occurred at greater rates than by random chance alone in the lower 4.7 km reach, which implies that LW aids spawning in marginal habitats. River managers and salmonid spawning habitat rehabilitation (SHR) projects should take LW additions into consideration as an important component of river rehabilitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The effects of restoration of channel meandering and of groyne structures on physical variables and river‐dwelling macroinvertebrates were examined in a lowland river, the Shibetsu River in Northern Japan. The lowland segment of the Shibetsu River, which previously meandered, was straightened by channelization and groynes installed on some portions of the channelized reach. In 2002, the channelization works were partly reversed to improve the degraded river ecosystem. Physical environment variables and macroinvertebrate community structure and composition were compared among reconstructed meanders and channelized reaches with and without groynes. The shear stress of the river edge in reconstructed meanders and groyne reaches was lower than that in a channelized reach. In addition, the edge habitat near the stream bank created by the reconstructed meander and groyne reaches had higher total density and taxon richness of macroinvertebrates than those of the channelized reach. Restoration provided a relatively stable edge habitat, contributing to the recovery of macroinvertebrate communities in such channelized lowland rivers. The placement of groynes can be an effective method of in‐stream habitat restoration for macroinvertebrates. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
A total of 436 logs were used to create 20 engineered log jams (ELJs) in a 1.1 km reach of the Williams River, NSW, Australia, a gravel‐bed river that has been desnagged and had most of its riparian vegetation removed over the last 200 years. The experiment was designed to test the effectiveness of reintroducing woody debris (WD) as a means of improving channel stability and recreating habitat diversity. The study assessed geomorphic and ecological responses to introducing woody habitat by comparing paired test and control reaches. Channel characteristics (e.g. bedforms, bars, texture) within test and control reaches were assessed before and after wood placement to quantify the morphological variability induced by the ELJs in the test reach. Since construction in September 2000, the ELJs have been subjected to five overtopping flows, three of which were larger than the mean annual flood. A high‐resolution three‐dimensional survey of both reaches was completed after major bed‐mobilizing flows. Cumulative changes induced by consecutive floods were also assessed. After 12 months, the major geomorphologic changes in the test reach included an increase in pool and riffle area and pool depth; the addition of a pool–riffle sequence; an increase by 0.5–1 m in pool–riffle amplitude; a net gain of 40 m3 of sediment storage per 1000 m2 of channel area (while the control reach experienced a net loss of 15 m3/1000 m2 over the same period); and a substantial increase in the spatial complexity of bed‐material distribution. Fish assemblages in the test reach showed an increase in species richness and abundance, and reduced temporal variability compared to the reference reach, suggesting that the changes in physical habitat were beneficial to fish at the reach scale. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Up to now, most lowland stream restoration projects were unsuccessful in terms of ecological recovery. Aiming to improve the success of stream restoration projects, a novel approach to restore sandy‐bottom lowland streams degraded by channel incision was launched, consisting of the addition of sand to the stream channel in combination with the introduction of coarse woody debris. Yet it remained unknown whether this novel measure of sand addition is actually effective in terms of biodiversity improvements. The aim of the present study was therefore to evaluate if sand addition can improve hydromorphological stream complexity on the short term leading to an increase in macroinvertebrate biodiversity. To this end, particle transport, water depth, current velocity, dissolved oxygen dynamics, and sediment composition were measured. The response of the macroinvertebrate community composition was determined at different stages during the disturbance and short‐term recovery process. Immediately downstream the sand addition site, transport and sedimentation of the sand were initially intense, until an equilibrium was reached and the physical conditions stabilized. The stream section matured fast as habitat formation took place within a short term. Macroinvertebrate diversity decreased initially but recovered rapidly following stabilization. Moreover, an increase in rheophilic taxa was observed in the newly formed habitats. Thus, although sand addition initially disturbed the stream, a relatively fast physical and biological recovery occurred, leading to improved instream conditions for a diverse macroinvertebrate community, including rheophilic taxa. Therefore, we concluded that sand addition is a promising restoration measure for incised lowland streams.  相似文献   

9.
Riparian ecosystems in montane areas have been degraded by mining, streamflow alterations, and livestock grazing. Restoration of ecological and economic functions, especially in high-elevation watersheds that supply water to lower elevation urban and agriculture areas is of high priority. We investigated the response of riparian vegetation and bank stability following channel treatments and riparian habitat restoration along a segment of the upper Arkansas River south of Leadville, Colorado. The study area has been historically degraded by heavy-metal mining and is designated a U.S. Superfund site. Additionally, trans-basin water diversions and livestock grazing have contributed to channel widening and altered vegetation composition and cover. We used a before-after-control impact study design in four reaches with varied contamination and grazing history to assess restoration success. Before restoration, streambanks were dominated by graminoids and total vegetation cover varied among reaches with willow cover less than 16% in three reaches. Post-restoration, changes in total vegetation cover fell short of projected goals, but willow cover was greater than 20% in all study reaches. The increase in woody cover likely contributed to reduced erosion and vegetation encroachment post-restoration. Differences in functional group cover among reaches persisted post-restoration and may be attributed to soil contamination levels and low willow seed rain and dispersal. These results highlight the importance of setting realistic restoration goals based on elevation and past land use. We recommend further remediation of fluvial tailings with low vegetation cover and continued monitoring of willow height and cover to determine if further restoration activities are needed.  相似文献   

10.
This study examines the relation between logjams and largemouth bass (Micropterus salmoides) on the alluvial sand‐bed lower Roanoke River. Disparate data sets from previous bank erosion, fisheries, and large wood studies were used to compare the distribution of largemouth bass with logjam frequency. Logjams are related to the frequency of bank mass wasting increasing from near an upstream dam to the middle reach of the study segment and then decreasing as the river approaches sea level. The highest concentration of largemouth bass and logjams was in the middle reach (110 fish per hour and 21 jams per km). Another measure of largemouth bass distribution, fish biomass density (g h?1), had a similar trend with logjams and was a better predictor of fish distribution versus logjams (R2 = 0.6 and 0.8 and p = 0.08 and 0.02 for fish per hour and g h?1 versus logjam, respectively). We theorize that the preference for adult bass to congregate near logjams indicates the use of the jams as feeding areas. The results of a principal component analysis indicate that fish biomass concentration is much more related to logjam frequency than channel geometry (width, depth, and bank height), bed grain size, bank erosion, or turbidity. The results of this research support recent studies on in‐channel wood and fisheries: Logjams appear to be important for maintaining, or increasing, both largemouth bass numbers and total biomass of fish in large eastern North American rivers. Persistent logjams, important as habitat, exist where relatively undisturbed river reaches allow for bank erosion inputs of wood and available anchoring locations. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

11.
Many streams have been modified so extensively that river managers do not have clear reference conditions to frame targets for stream restoration. Large woody debris (LWD) has long been recognized as an important influence on both geomorphic and ecologic processes in stream channels; however, there have been few studies of LWD dynamics in New England. Although this region is heavily forested today, the forest is predominantly young (70–90 years old) regrowth following a historical episode of severe deforestation. This study presents the results of an extensive census of LWD and associated stream characteristics in over 16 river kilometres of northeastern Connecticut streams and represents the first reported inventory of wood loading and sorting in Southern New England. Results of this study indicate that wood loading and jam frequencies in the study region are low: 2.5–17.8 and 0.5–5.51 per 100 m, respectively. Orientation of LWD is predominantly parallel to flow, an indication that these streams are not retaining organic matter or sediment, which has important geomorphic and ecologic implications. Results imply that stream recruitment of LWD is still lagging from the massive forest conversions of the 18th and 19th centuries. Given the low wood loadings observed in the study reaches, manual wood addition and continued forest regeneration would likely improve both habitat diversity and organic matter and fine sediment retention in these systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
We investigated interactions of riparian vegetative conditions upon a suite of channel morphological variables: active channel width, variability of width within a reach, large wood frequency, mesoscale habitat distributions, mesoscale habitat diversity, median particle size and per cent fines. We surveyed 49 wadeable streams, 45 with low levels of development, throughout the Upper Little Tennessee River Basin in the Southern Appalachians. Conversion of riparian forest to grass has reduced aquatic habitat area (quantified by active channel width), channel width variability, wood frequency, mesoscale habitat diversity and obstruction habitat (wood and rock jams), and such conversion has increased the fraction of run and glide habitat. Channels with grassy riparian zones were only one‐third to three‐fifths of the width of channels with forested riparian zones, and channels with grassy or narrow forested riparian zones were nearly devoid of wood. Particle size metrics were strongly affected by stream power and agricultural cover in the basin, but the data suggest that elimination of riparian forest reduces median bed particle size. Results indicate that even modest increases in the extent and width of forested riparian buffers would improve stream habitat conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Dead wood pieces, especially when organized in jams, play an important geomorphic role in streams because of the effects on flow hydraulics, pool formation and sediments storage. The increase in stream morphological diversity and complexity also exerts an important ecological role. This work reports on geomorphic role of large wood (LW) pieces and jams in a third‐order mountain stream located in the Southern Tierra del Fuego (Argentina), and draining an old‐growth Nothofagus‐forested basin not influenced by the beavers damming activity. Even if the in‐stream number of wood pieces (length >1 m; diameter >0.1 m) is comparable to that observed in other climatic areas, the slow growth of the Nothofagus forest causes a lower wood abundance in terms of volumetric load. Because of the relatively small dimensions of the surveyed LW pieces, almost 70% of them demonstrated to have been fluvial transported and also the wood jams reflect the apparent dynamic nature of wood in the channel. Wood jams exert a significant influence on the channel morphology, representing almost half of the drop caused by steps and being responsible for the creation of 30% of the pools. LW‐forced pool volume is strongly and positively correlated to the height of the LW jam. The geomorphic influence of LW jams is also exerted by a considerable sediment storing capacity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Extensive new pipeline systems proposed to transport natural gas and oil throughout North America will potentially result in thousands of new stream crossings. The watercourses encountered at these crossings will range from small, ephemeral headwater streams to large, perennial mainstem rivers; from dynamic gravel‐bed streams to stable bedrock channels; and from steep, source reaches to low gradient, response reaches. Based on past experience at pipeline crossings, the potential for both short and long‐term negative impacts on aquatic habitat and species is substantial. In assessing potential hazards to aquatic habitat and species, the diverse physiography and ecology of the stream affected, combined with the number and range of new pipelines proposed, pose significant challenges for project developers charged with collecting, stratifying, evaluating, analysing, interpreting, and presenting stream crossing data in formats that are accessible, usable and useful. It is equally challenging for project reviewers to detect, distill and summarize potential project impacts and then identify reasonable options for their avoidance, minimization, and mitigation. To address these concerns, the US Fish and Wildlife Service, in conjunction with Ruby Pipeline, LLC, developed a pipeline crossing framework and risk analysis approach to stratify potential aquatic impacts, based on both stream characteristics and project types. In this approach, pipeline crossings are ranked in terms of relative short and long‐term risk to aquatic habitat and are then analysed, designed, and monitored in ways appropriate to their risk. This approach allows project developers and reviewers to focus resources and monitoring on the crossings that present the highest risks to aquatic habitat and species, while expediting design and construction, and minimizing the monitoring of low‐risk crossings. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

15.
Urbanization results in major changes to stream morphology and hydrology with the latter often cited as a primary stressor of urban stream ecosystems. These modifications unequivocally alter stream hydraulics, but little is known about such impacts. Hydraulic changes due to urbanization were demonstrated using two‐dimensional hydrodynamic model simulations, comparing urban and non‐urban stream reaches. We investigated three ecologically relevant hydraulic characteristics: bed mobilization, retentive habitat, and floodplain inundation, using hydraulic metrics bed shear stress, shallow slow‐water habitat (SSWH) area, and floodplain inundation area. We hypothesized that urbanization would substantially increase bed mobilization, decrease retentive habitat, and due to increased channel size would decrease floodplain inundation. Relative percent area of bed disturbance was 4 times higher, compared with that of the non‐urban stream at bankfull discharge. SSWH availability rapidly diminished in the urban stream as discharge increased, with SSWH area and patch size 2 times smaller than the non‐urban stream for a frequently occurring flow 0.7 times bankfull discharge. Floodplain inundation decreased in frequency and duration. These results demonstrate changes in hydraulics due to urbanization that may impact on physical habitat in streams. New “water sensitive” approaches to stormwater management could be enhanced by specification of hydraulic regimes capable of supporting healthy stream habitats. We propose that a complete management approach should include the goals of restoration and protection of natural hydraulic processes, particularly those that support ecological and geomorphic functioning of streams.  相似文献   

16.
Large wood (LW) has important physical and ecological functions in streams. Riparian vegetation is extensively removed during urban expansion, and urban streams may experience enhanced fluvial transport of LW due to flashy hydrology. In this study, LW loads were assessed for three reaches on North Buffalo Creek, an urban stream located in Greensboro, North Carolina, United States. These three reaches have similar hydrology but different riparian vegetation densities. We measured the frequencies and sizes of both in-channel LW and riparian vegetation across the three reaches. Our results showed that the recently reforested reach had greater LW volume (22.5 m3/km) compared to the unmanaged forested site (16 m3/km) and the site with low riparian vegetation density (4.78 m3/km). The difference in LW frequency among reaches was statistically significant ( p = .05 ). However, the difference in the volume of individual pieces was not significantly different across reaches ( p = .84 ) , indicating that a similar size of wood is recruited across the three sites. Our findings also showed that there is a positive relationship between riparian vegetation frequency and in-channel LW frequency, which are significantly related as a power function. Spatial lag models (integrating upstream riparian trees) did not show better results compared to a non-lagged model, suggesting that storage and recruitment were predominantly local and that the LW distribution at our reaches is limited by recruitment rather than dominated by fluvial transport. Our findings suggested that a fully forested watershed is not needed to provide some of the benefits of wood to urban streams.  相似文献   

17.
Mechanically reshaping stream banks is a common practice to mitigate bank erosion in streams that have been extensively channelised and lowered for land drainage. A common perception regarding this activity is that fish populations will be largely unaffected, at least in the short term, because the low‐flow wetted channel remains undisturbed. However, the response of fish populations to this practice has rarely been quantitatively evaluated. Using a Before‐After‐Control‐Impact design, we assessed fish community responses to a catchment‐scale bank reshaping event in a fourth‐order low‐gradient stream that drains an intensive agricultural landscape. Quantitative electric fishing and fish habitat data were collected 2 months before and annually for 3 years after the reshaping event. After reshaping, deposited fine sediment levels increased in impact reaches, and there was a significant reduction in anguillid eel biomass (by 49%). In contrast, densities of obligate benthic gobiid bully species increased significantly in impact reaches—potentially due to reduced predation pressure from eels. Three years after bank reshaping, fish community structure had largely returned to its preimpact state in the reshaped areas. Our results suggest that, even in highly modified stream channels, further bank modification can reduce instream habitat quality and displace eels for at least 1 year. Managers should endeavour to use bank erosion control measures that conserve bank‐edge cover, especially in streams with populations of anguillid eels, because these fish are declining globally.  相似文献   

18.
Wood abundance in aquatic systems has been dramatically reduced compared to historical levels due to anthropogenic activities that led to wood removal and stream simplification. As a result, reintroduction of wood to aquatic systems is now a widely used and relatively well‐studied restoration technique for increasing habitat complexity. Although stream periphyton (biofilm) and invertebrates serve as food sources for a variety of predators including fish, birds and bats, data on how lower trophic levels respond to wood placement are relatively scarce. The purpose of this study was to test the hypothesis that periphyton biomass and aquatic invertebrate density were higher on Engineered Log Jams (ELJs) than on inorganic substrates in two large Pacific Northwest river systems. Among years and rivers, periphyton biomass and invertebrate densities were significantly higher on ELJs than on cobbles within the same reach. Invertebrate communities on ELJs were dominated by meiofauna (<500 µm), whereas cobbles were dominated by larger chironomids. We attribute these trophic level differences to substrate type, as we did not detect taxonomic differences between cobbles in reaches with and without ELJs. We show that adding wood to reaches with little or no naturally occurring wood increased overall habitat surface area and thereby the potential for increased productivity relative to reaches with low levels of wood. Finally, wood supports a unique community of invertebrates that are often overlooked in lotic system studies but may be contributing substantially to overall biological diversity. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

19.
Dams disrupt the flow of water and sediment and thus have the potential to affect the downstream geomorphic characteristics of a river. Though there are some well‐known and common geomorphic responses to dams, such as bed armouring, the response downstream from any particular dam is dependent on local conditions. Herein, we investigate the response of the upper Santa Ana River in southern California, USA, to the construction of a large dam at the transition from mountains to valley, using calculations of bedload transport capacity on the mainstem below the dam and for major tributaries. Approximate sediment budgets were constructed for downstream reaches to estimate deposition and erosion rates for sand, gravel, and cobble particle sizes. Our results indicate that the classical response of bed armouring and erosion is likely limited to a short reach immediately below the dam. Farther downstream, though transport capacity is reduced by flow regulation by the dam, the channel reaches are likely to remain depositional but with reduced deposition rates. Persistent deposition, as opposed to erosion, is the result of the replenishment of flow and sediment supply by large downstream tributaries. In addition, the calculations indicate that the composition of the bed is unlikely to change substantially in downstream reaches. A Monte Carlo approach was employed to estimate the uncertainty in the sediment budget predictions. The impacts of the dam on the geomorphic character of the river downstream could have implications for native fish that rely on coarse substrate that supports their food base.  相似文献   

20.
Large woody debris (wood) plays a number of important roles in forested stream ecosystems. Wood in streams provides habitat and flow refugia for fish and invertebrates, and is a site of biofilm production that serves as food for grazing organisms. Logs added to streams are rapidly colonized by invertebrates, and this habitat alteration is accompanied by changes in community composition and functional processes. A multiple habitat, qualitative sampling approach was employed to evaluate macroinvertebrate communities associated with wood habitats in 71 stream reaches in central Michigan and southeastern Minnesota, two agricultural regions in the midwestern United States. Macroinvertebrate taxa were classified with respect to behaviour (e.g. sprawler, clinger, swimmer), as well as trophic/feeding characteristics. These traits were used to examine community structure as a function of wood abundance and distribution. Although wood is not abundant in these streams and logs are generally small in size, wood is a very important habitat in both Michigan and Minnesota: 86% and 95% of the total taxa encountered at Michigan and Minnesota study sites, respectively, were found in wood habitats. Differences in regional patterns in the distribution of taxa across habitats were observed between Michigan and Minnesota. These are believed to result from differences in the number of habitat types available, and the dominant substrate composition. Local invertebrate diversity increased in Michigan, but not Minnesota, with the presence of wood habitats in streams. The presence of wood at a site increased the average taxa richness by 15 and 10 taxa in Michigan and Minnesota, respectively. Macroinvertebrate behavioural attributes and functional traits associated with wood habitats suggest that community traits may vary due to both local difference in flow and the location of wood in the channel. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号