首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
为研究降雨和库水位变动共同作用对均质土石坝坝坡稳定特性的影响,基于非饱和渗流原理,选择不同降雨强度、降雨类型(3种)及库水位升降速率,对土石坝坝坡稳定情况进行有限元模拟,结果表明:(1)无降雨水位变动时,水位变动速率主要影响上下游坝坡安全系数趋于稳定的时间,下游坡安全系数变化幅度整体要小于上游坝坡;(2)不同强度降雨和库水位变动同时作用时,降雨强度对上游坝坡的安全系数影响较小,上游坝坡最危险工况为水位下降4 m/d+40 mm/d降雨,安全系数为1.298,下游坝坡最危险工况是水位上升4 m/d+40 mm/d降雨,安全系数为1.443;(3)不同类型降雨和库水位变动共同作用时,此时坝坡稳定分析可分为3个阶段,各阶段安全系数变化随降雨类型呈现出复杂的变化特性。该研究成果为正确认识降雨联合库水位变动下的土石坝坝坡稳定性规律提供参考。  相似文献   

2.
为研究库水位变动对中小型均质土石坝坝坡稳定性的影响机理和规律,根据非饱和渗流原理及刚体极限平衡理论的简化毕肖普法,对均质土石坝在渗流应力耦合状态及水位骤升和骤降工况下坝体渗流和上下游坝坡稳定性情况进行有限元模拟。结果表明:考虑渗流应力耦合作用影响,库水位骤升时,上游坝坡安全系数先以较快速度增大后缓慢增大最后稳定不变,下游坝坡安全系数先下降后缓慢上升较小幅度,最终趋于稳定;库水位骤降时,上游坝坡安全系数先以较快速度减小后缓慢减小最后趋于不变,下游坝坡安全系数先不断增大后缓慢减小较小幅度,最终趋于稳定;水位骤升骤降的过程中,坝体上下游坝坡的安全系数均大于规范规定的最小安全系数,其抗滑稳定满足规范要求。该研究成果为中小型土石坝风险评估及后期水库大坝采取除险加固措施提供了参考。  相似文献   

3.
针对降雨发生在库水位骤降不同时刻下的土石坝坝坡渗透稳定性研究较少的问题,基于宜春市温汤河四方井水利枢纽工程黏土心墙坝的实测数据,利用有限元软件Geostudio软件对降雨发生在库水位骤降不停时刻下的上下游坝坡渗透稳定性规律进行数值模拟,得到不同监测点的孔压变化及上下游坝坡的安全系数变化规律。结果表明,上游坝坡处的监测点孔压变化对不同类型降雨不敏感,下游坝坡处监测点不同类型降雨下孔压变化差异较大,降雨发生在库水位下降的不同时刻下孔压均有一个大幅上升的过程;上游坝坡降雨发生在库水位骤降时刻越后,最小安全系数越小,而下游坝坡安全系数在降雨时刻则有个突然下降的过程,研究结果为认识黏土心墙坝在降雨发生在库水位骤降不同时刻下的边坡渗透稳定性规律提供了一定的参考。  相似文献   

4.
为研究库水位骤降联合降雨情况下某黏土心墙坝的渗流特性以及稳定性规律,利用Geo-studio软件,对库水位骤降、不同强度降雨以及降雨发生在库水位骤降的不同时刻下的某黏土心墙坝的渗流特性以及上下游坝坡的稳定性规律进行了数值模拟。计算结果表明:(1)库水位骤降工况下孔压降低152%,上游坝坡安全系数先减小12.8%,后略有增大,下游坝坡则增大0.5%,库水位下降速率越大,孔压下降越快,上游坝坡安全系数下降越快,最小安全系数越小,下游坝坡安全系数上升越快;(2)降雨工况下孔压先平均增大2.1%后降低至初始水平,安全系数则先减小0.3%后增大至初始水平,降雨强度越大,孔压上升的幅度越大,最小安全系数越小;(3)降雨发生在库水位骤降不同时刻下,孔压呈现先减小后保持不变,在降雨时刻呈现突然上升的趋势,上游坝坡安全系数先减小后维持不变,下游坝坡安全系数先增大后保持不变,在降雨时刻突然下降,降雨发生在库水位下降结束时刻安全系数最小。  相似文献   

5.
利用岩土软件Geostudio,根据非饱和渗流原理,以某水利枢纽中的黏土心墙土石坝为背景,分析不同库水位工况下降雨期间偶遇地震作用下黏土心墙土石坝上下游坝坡渗流特性及抗震稳定性。计算结果表明,在不同水位工况下发生降雨时,上下游堆石区内的监测点孔压总体上呈现先增大后减小的变化规律,上游堆石区内的监测点离库水位越远,孔压力变化越剧烈;下游堆石区内的监测点离地下水位越远,孔压力变化越剧烈。在降雨期间遇到地震时,高水位工况下上游坝坡的安全系数总体上比低水位工况大,下游坝坡则恰恰相反。研究成果可为实际工程管理运行提供一定的参考。  相似文献   

6.
本文以平山水库黏土心墙坝为例,计算得到了库水位从校核洪水位下降至正常蓄水位和死水位,坝体内部浸润线分布和上下游坝坡的最小安全系数。结果表明:随着库水位下降,浸润线也逐渐降低,心墙内浸润线由直线变为折线;校核洪水位时最大渗流速度可达0.4503m/d;上下游坝坡的最小安全系数随水位降低而减小,但均满足规范要求;水位下降导致心墙与上游坝体交界处的剪应变范围增大,并有向上游坝坡扩展的趋势。  相似文献   

7.
为研究木桥河水库面板坝不同缺陷在库水位变动工况下的上下游坝坡渗透稳定性规律,利用Geo-studio软件进行了数值模拟,得到了缺陷面板坝的坝后浸润线高程、渗漏量及稳定性变化规律,结果表明:库水位高程越高,面板坝坝后浸润线高程越高;坝体渗漏量越大,上游坝坡安全系数越大,下游坝坡安全系数越小;库水位骤降速率越大,最小安全系数出现的时刻越早,最小安全系数也越小;一旦面板发生缺陷,面板坝后的浸润线及渗漏量会出现较大增长,安全系数下降幅度也较大,缺陷高程越高,面板坝后浸润线高程及渗漏量越大,安全系数也越小。  相似文献   

8.
为研究木河桥水库面板坝不同缺陷在库水位变动工况下的上下游坝坡渗透稳定性规律,利用Geo-studio软件进行数值模拟,得到缺陷面板坝的坝后浸润线高程、渗漏量及稳定性变化规律。研究结果表明,库水位高程越高,面板坝坝后浸润线高程越高,坝体的渗漏量越大,上游坝坡安全系数越大,下游坝坡安全系数越小;库水位骤降速率越大,最小安全系数出现的时刻越早,最小安全系数也越小;一旦面板发生缺陷,面板坝后的浸润线及渗漏量会出现较大的增长,安全系数下降幅度也较大,缺陷高程越高,面板坝后浸润线高程及渗漏量越大,安全系数也越小。  相似文献   

9.
库水位骤降时,土石坝坝体内浸润线高于库水位,较高的孔隙水压力和渗透力会导致上游坝坡失稳。英布鲁水电站土石坝设计过程中,采用饱和与非饱和渗流模型的有限元法分析得到库水位骤降条件下土石坝的非稳定渗流场,采用极限刚体平衡法计算得出上游坝坡的安全系数。结果表明:英布鲁水电站土石坝在水库敞泄时,上游坝坡的安全系数不满足规范要求;库水位按设计推荐的库水位降落速度控制,上游坝坡的稳定安全系数满足规范要求。  相似文献   

10.
库水位回落条件下土石坝边坡稳定分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用二次开发的有限元软件ANSYS,形成渗流与边坡稳定分析程序模块,计算得到库水位回落条件下的土石坝渗流场;据此分析非饱和土强度、土体密度随含水量变化的关系及渗透力作用;利用强度折减有限元技术分析了水位降落过程中渗透系数、水位降速对边坡稳定性的影响.结果表明,库水位降落初期,坝内浸润线下降,下游坝坡稳定性增大,但此时上游坝坡稳定性仍大于下游坡;饱和渗透系数相同时,库水位降落速度越大则上游坝坡稳定性越差,不同水位降落速度对较小饱和渗透系数的土石坝渗流场及边坡稳定性影响程度较小,对较大渗透系数的坝体则影响较大;水位下降速度相同,则坝体饱和渗透系数越小其上游边坡稳定安全系数越小.  相似文献   

11.
本文基于Van Genuchten非饱和渗流模型综合分析了土石坝饱和一非饱和渗流,以工程实际为例,研究了水位骤降工况下土石坝渗流稳定问题.结果表明:库水位骤降工况下,上游水位的变化对坝体渗流量的影响较大;库水位急剧降落易使浸润线形成逆向渗流形态,并造成土石坝坝坡稳定性的降低,但是当孔隙水压力消散时间足够长时,上游坝坡稳定性有一定程度的提高.  相似文献   

12.
利用岩土软件Geostudio,根据非饱和渗流原理,以四方井水利枢纽中的黏土心墙土石坝为背景,分析了库水位骤降偶遇地震作用下黏土心墙土石坝上下游坝坡渗流特性及抗震稳定性。计算结果表明:库水位下降速率越大,上游坝坡的孔压力变化越剧烈,安全稳定系数越小;监测点位置越高,孔压越难以达到稳定值。对于下游坝坡而言,孔压力变化相对平缓,监测点距离地下水位越远,孔压越难以稳定,孔压力响应库水位骤降的时间越长;库水位骤降至死水位情况下发生地震时,库水位骤降速率越大,上游坝坡安全系数越小,Newmark位移越大。下游坝坡的安全系数对于骤降速率不敏感,安全系数基本一致,Newmark位移非常接近。研究成果可为实际工程管理运行提供一定的参考。  相似文献   

13.
水库在运行的过程中为满足一定的需求,水位会在不同的区间之间进行动态的变化,而水位在变化的同时会引起相应渗流问题,从而影响到土石坝的稳定性。利用有限元软件Geo-Studio对土石坝在动态水位变化下的稳定性进行数值模拟。研究表明:在蓄水阶段上游坝坡的安全系数随着水位的上升逐步增加,库水位下降时,坝坡的安全系数呈现下降趋势,且库水位下降速率越大,坝坡失稳所需时间越短。  相似文献   

14.
针对某病险水库土石坝渗漏问题,提出了"粘土斜墙+坝基截水槽"加固方案。分析了库水位骤降工况下加固后的坝体渗流及坝坡稳定性。结果表明:与土石坝加固前相比,加固后的坝体渗流量较小,浸润线急剧降低,坝坡安全系数明显增加,坝坡失效概率降低,坝坡安全系数与失效概率均符合安全规范要求。  相似文献   

15.
增建防渗墙是一种常见的土石坝加固手段,目前,关于土石坝除险加固工程中增建混凝土防渗墙后是否对坝坡稳定产生影响的研究较少,工程设计上也很少考虑.为分析增建防渗墙对坝体的影响,采用有限元法建立数值计算模型,分析增建防渗墙前后坝体渗流、应力场变化规律,对比计算不同运行工况条件下的坝坡稳定情况.计算结果表明:增设防渗墙后,上游坝坡浸润线有所抬高,下游坝坡浸润线明显降低;墙前土体孔隙水压力大于墙后土体,墙后土体的有效应力大于墙前土体;增建防渗墙后上游坝坡的稳定安全系数减小,但减小的幅度不大,相比上游坝坡,增建防渗墙对于下游坝坡的稳定安全系数影响更显著,安全系数提升了近10%;水位骤降速度越大,上游坝坡稳定安全系数下降越快,骤降达到的最小坝坡稳定安全系数越小,对于坝坡的稳定越不利.  相似文献   

16.
为研究围堰在降雨及水位变动下的渗流特性及边坡稳定情况,以阿扎德帕坦水电站下游土石围堰为例,对比两种不同围堰剖面设计方案,考虑短历时强降雨工况,基于非饱和渗流原理,对两种围堰断面方案在渗流应力耦合状态下遭遇水位变动和短历时强降雨时的渗流和边坡稳定性情况进行了有限元模拟。方案1结构较为简单,围堰上游边坡(背水坡)为1∶1.50,下游边坡(迎水坡)为1∶1.75,迎水坡采用厚0.5 m的块石护坡,围堰堰身和下部基础采用高喷防渗墙。方案2结构较复杂,相比于方案1,防渗墙前移,围堰顶部采用厚40 cm、C20W6F100的混凝土板,防止在过流时对其造成严重冲刷。结果表明:方案2上下游边坡防渗效果均比方案1更具针对性,且围堰渗流特性及阻渗效果较好;在不同静水位条件下,方案2上下游边坡的安全系数整体上大于方案1的,且满足规范要求,其整体稳定性优于方案1的;水位变动时,无论是水位上升还是下降,降雨对围堰上游边坡的安全系数基本没有影响,但降雨会降低下游边坡的安全系数,降雨强度越大,安全系数就越小。  相似文献   

17.
邵志一  肖珍珍 《人民珠江》2023,(S2):216-221
针对下游鱼塘对水库大坝渗流稳定及抗滑稳定的影响,以阳春市湴濛仔水库大坝为研究对象,采用达西定律、渗流理论和简化毕肖普法等经典理论及模型,根据大坝下游鱼塘水位修正模型,利用Autobank有限元分析软件,计算出该模型的渗流参数及抗滑稳定系数,并与未经修正的经典模型作对比。研究发现在考虑下游鱼塘的影响情况下,坝体渗流量显著增大,虽然上游库水位在正常蓄水位工况下,出逸点渗透坡降有减小,但其他工况下,出逸点渗透坡降均表现为增大。说明当水位升高至某一高程时,下游鱼塘的存在对大坝渗流稳定的影响是不利的,在工程中遇到大坝下游存在鱼塘的情况,要对渗流稳定产生的不利影响提高认识,采取贴坡排水等相应的措施。另外,考虑大坝下游鱼塘的影响情况下,上游坝坡抗滑稳定安全系数不变,下游坝坡抗滑稳定安全系数增大,说明大坝下游鱼塘对上游坝坡抗滑稳定无影响,对下游坝坡抗滑稳定有利。  相似文献   

18.
基于FredlundXing非饱和渗流模型和Morgenstern-Price极限平衡理论,对水位骤降下土石坝的渗流和结构稳定进行分析。结果表明,库水位骤降时坝体内浸润线未与坝前水位同时降落,坝体浸润线从上游至下游表现为先升高再降低,迎水坡安全系数明显降低而背水坡基本不变。  相似文献   

19.
防渗墙的防渗效果直接影响土石坝的安全,而防渗墙缺陷又严重影响防渗墙的功效。利用GEO-STUDIO对不同水位情况下不设置防渗墙和有防渗墙缺陷的坝体进行稳定性分析。设置防渗墙前,随着库水位的降低,坝坡的安全系数随着降低,库水位不再变化时,坝坡安全系数逐渐回升。库水位下降速度越大,上游坝坡安全系数越低。假定防渗墙的四个土层均可能出现空洞,当缺陷所在的土层渗透系数越大时,防渗墙缺陷对坝体稳定性的影响越大,坝坡下游的安全系数偏小。在实际工程中,应改善施工工艺,防止防渗墙出现缺陷,进而对土石坝的防渗效果造成影响。  相似文献   

20.
利用岩土软件Geostudio,根据非饱和渗流原理,以某水利枢纽中的黏土心墙土石坝为例,分析库水位骤降偶遇地震作用下黏土心墙土石坝上游坝坡渗流特性及抗震稳定性。计算结果表明,库水位下降速率越大,上游坝坡的孔压力变化越剧烈,安全稳定系数越小;监测点位置越高,孔压越难以达到稳定值。库水位骤降至死水位情况下发生地震时,库水位骤降速率越大,上游坝坡安全系数越小,Newmark位移越大。研究成果可为实际工程管理运行提供一定的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号