首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
湖泊的适宜生态水位是进行湖泊规划设计、湖泊保护范围确定等工作的重要依据。本文以湖北省汈汊湖为例,通过选取频率分析法、湖泊形态分析法、生物空间法、最低水位法、水环境模拟法5种不同的生态水位确定方法,开展了湖泊生态水位确定方法的比较研究。研究结果表明,湖泊生态水位计算结果与每种方法的理论和假设密切相关,5种方法计算的汈汊湖生态水位结果介于22.86~24.20m之间。  相似文献   

2.
湖泊的水位数据作为评价湖泊变化的重要指标,对于研究区域水资源变化和生态环境状况具有重要意义。但绝大多数高原湖泊位于人烟稀少、自然条件恶劣的高海拔地区,往往难以获取基础观测数据。以卫星测高数据和遥感影像数据为基础,获得2008—2018年库赛湖水位和面积数据,并结合气象数据对水位变化原因进行分析。结果表明:库赛湖水位变化先后主要经历了缓慢上涨(2008—2011年)→急剧上涨(2011年)→趋于稳定(2013—2018年) 3个阶段。2008—2011年是湖泊水位的缓慢上升期,气候暖湿化是主要原因;2011年由于上游卓乃湖发生溢流,水位短时间内急剧上涨;2012—2018年,在接收大量来水后库赛湖也发生外溢,与上下游湖泊串联成一体,水位开始趋于稳定。对水位数据和气象特征因子进行相关性分析,可见湖泊水位与气象因子的变化情况具有较好的相关性,初步分析认为区域降水量增加是库赛湖水位上涨的主要原因,而气候变暖引起的冰川融水增加、冻土水分释放可能是次要原因。  相似文献   

3.
和仕华 《人民珠江》2023,(S1):171-176
最低生态水位的设置有利用湖泊的保护与管理,但过多的生态水位阈值又会给管理增加成本,基于洱海大关邑水位站1952—2020年近69 a水位资料,采用湖泊形态法、实际最低生态水位法、生态耗水量法等3种方法研究洱海湖泊年内最低生态水位动态,并提出最低生态水位设定的时段。通过年内最低生态水位的确定和各月直接计算的生态水位做对比,对洱海水位调控做出评价并提出建议。研究表明:(1)湖泊形态法确定的最低生态水位可以突变点来确定,不一定是单位水位的湖面面积差显著减少;(2)对于最低运行水位的湖泊,在10 a以上均以此运行且无较大生态环境问题的,其已经形成一定的生态平衡,建议采用最低运行水位作为最低生态水位;(3)对于吞吐型湖泊,仅确定1个年生态最低水位是无法满足调度需求,应扩展至存在天然水量消耗的月份,通过计算,确定洱海年最低生态水位为1 964.30 m,确定洱海生态耗水期为11月至次年6月,耗水期各月最低生态水位依次为1 964.66、1 964.67、1 964.59、1 964.65、1 964.56、1 964.50、1 964.46、1 964.30 m。  相似文献   

4.
在野外采样调查水生植物种类、种群现状和空间分布的基础上,基于湖泊形态分析法和生物空间最小需求法确定了玄武湖最低生态水位,并进一步考虑水生植物的水位需求,制定了水生植物不同生长阶段的生态水位调控方案。结果表明:玄武湖水生植物种类丰富但覆盖度不高,为13.2%,沉水植物的覆盖度很低,为2.1%;玄武湖最低生态水位为9.6 m,萌发期水位为9.9 m时,有利于水生植物尤其是沉水植物的萌发,能达成30%的水生植被覆盖度目标;夏季水位为9.8 m时,能保障湖泊防洪安全,控制过度生长的荷花等挺水植物,促进玄武湖总体水生植物的生长与修复。  相似文献   

5.
数十年来水位一直在下降的中国最大湖泊——青海湖将在近十年后开始持续回升。 中国科学院地理与湖泊研究所研究员利用数值模型进行的计算结果表明,青海湖水位在2010年前处于波动状态,其后达到稳定状态,2016年后持续回升,2030年左右水位将恢复到上世纪70年代的水平,比目前升高3m多。  相似文献   

6.
湖泊既是陆地水资源的重要储蓄场所,也是区域和全球水文循环系统的重要组成部分,其水量波动对气候变化较为敏感。为了掌握湖泊面积、水位和水量的变化规律,借助1988-2018年Landsat TM/ETM/OLI影像和归一化差异水体指数NDWI(normalized difference water index)提取青海湖湖泊水域面积;利用ICESat-GLAS(ice, cloud, and land elevation satellite-geoscience laser altimeter system)测高数据提取青海湖湖泊水位变化,并结合观测资料检验陆地GLAS光斑脚点高程和湖泊水位的估测精度。根据湖泊面积与水位、水量与水位的关系,构建1988-2018年青海湖湖泊面积-水位-水量波动时变序列,并探讨湖泊水位、面积、水量的年内和年际变化特征。结果表明:GLAS光斑脚点高程与高程实测值的标准误差为0.14 m,与SRTM3高程标准误差为0.26 m;1988-2018年青海湖年均水位和水量总体上呈增加趋势,其中年均水位最低值出现于2004年,平均水位为(3 193.0±0.16) m,湖泊面积为(4 190±13) km2;与1988年年均水位相比,2018年青海湖年均水位上升了(1.93±0.22) m,湖泊年均面积扩张了(197.75±6.3) km2,湖泊水量增加了(8.93±0.12) km3。  相似文献   

7.
长江流域重要湖泊最小生态水位计算及其保护对策   总被引:1,自引:0,他引:1  
本文对湖泊形态法、天然水位资料法、功能法、曲线相关法等湖泊最小生态水位计算方法进行了介绍;结合长江流域湖泊资料情况,选用天然水位资料法,对长江流域滇池等15个面积大于100 km2的湖泊进行最小生态水位计算;同时提出了从保护生物多样性和维持湖泊的基本生态系统稳定等方面保护和改善湖泊的生态环境的措施。  相似文献   

8.
洞庭湖接纳湘、资、沅、澧四水及长江“四口”入湖洪水,经调蓄后注入长江,是典型的河网湖泊区。作者根据其河湖组成的基本格局,将其概括为多输入单输出、多输入多输出两型,并分别建立其数学预报模型。每型由区间洪水计算、水位流量关系转化、流量演算和调蓄演算组成。再将两型串连可全面解决湖区内部和出口的洪水预报和水文计算问题。运行表明是有效的。  相似文献   

9.
为了理解气候变化背景下的内陆湖泊水位、面积、水量波动变化规律,科学合理地指导湖泊水资源利用与开发。利用1990-2015年Landsat TM/ETM/OLI影像和2002-2015年多源星载雷达测高资料,借助归一化水体指数(Normalized Difference Water Index,NDWI)提取博斯腾湖湖泊水域面积,结合湖泊水位观测数据,对星载雷达测高数据提取的湖面瞬时水位估计值进行对比与分析;根据湖泊面积与水位、水量与水位的关系式,构建湖泊面积-水位-水量波动时变序列,并探讨湖泊水位和水量变化的年际特征。结果表明:ICESat-GLAS、ENVISatERS、Jason-12的当日水位估计值与附近扬水站的水位观测值绝对误差分别小于0. 21、0. 18、0. 15 m,而且具有较强的相关性和一致性。1990-2002年湖泊水位持续增长阶段; 2002-2015年期间,湖泊水位持续下降。2015年湖泊水域面积比1990年减少了(32. 20±3. 5) km2,年均水位下降了(0. 81±0. 19) m,湖泊水量减少了(9. 49±0. 022)×108m3。因此,湖泊水量变化为气候系统和人类活动的影响机制的理解提供了参考依据。  相似文献   

10.
为提高天山西部山区融雪径流的预报精度,更好地指导所在区域的工农业生产发展,针对影响预报精度的关键问题(预报因子的选择),基于互信息法、相关系数法、主成分分析法对研究区的预报因子进行优选,采用RBF神经网络以及组合小波BP神经网络模型进行径流预报研究,并进行不同方案的比较。结果表明:①互信息法优选出的预报因子作为模型输入可以提高预报精度;②采用不同优选预报因子作为RBF神经网络以及组合小波BP神经网络模型的输入变量,结果表明RBF神经网络模型的预测精度要好于组合小波BP神经网络模型;③以相对误差作为评价模型精确度的标准,预测效果最好的是基于互信息方法挑选出的预报因子作为RBF神经模型输入数据的模型预测结果。  相似文献   

11.
根据博斯腾湖1956-2008年实测水位、入湖水量资料,分析了入湖水量与博斯腾湖水位变化关系,采用相关方法计算了博斯腾湖汛期设计入湖水量,并指出博斯腾湖水位的变化主要影响因素为汛期入湖水量,并不是短历时场次洪水,以此为计算基础,得出结论:博斯腾湖最大输水能力下,100年一遇洪水位为1048.6 m,50年一遇洪水位1 048.47 m,可为博斯腾湖水量调度、东、西泵站等输水工程的运行管理提供一定的参考价值。  相似文献   

12.
洞里萨湖是东南亚最大的且颇具国际影响的淡水湖。基于洞里萨湖湖区不同来源的地形资料,构建了不规则三角网TIN,量算得到不同水位下具有0.1m梯度的洞里萨湖面积和容积。对比分析和水文学法复核结果表明本次构建的洞里萨湖水位与面积和容积的关系是合理的,描绘出了洞里萨湖"低水似湖、高水湖相"的自然景观特点。以洞里萨湖甘邦隆站和出湖控制站波雷格丹站为代表,建立了洞里萨湖水位-面积(容积)关系与实测湖水位的响应关系。结果表明洞里萨湖面积、容积与甘邦隆站水位呈非线性一一对应关系,与波雷格丹站水位成绳套关系,绳套两侧分别对应汛期湄公河向洞里萨湖倒灌和汛后洞里萨湖向湄公河补水。基于河湖关系构建了不同时期不同河湖水位差下的洞里萨湖面积、容积与波雷格丹站水位的相关关系,该精细化的洞里萨湖水位-面积(容积)量算成果可为防汛抗旱精准预报提供科技支撑。  相似文献   

13.
为得到太湖长期动态变化过程,利用1975—2015年Landsat数据,基于归一化差异水体指数法(NDWI)和改进型归一化差异水体指数法(MNDWI)提取湖泊面积数据,并基于ICESat和Hydroweb数据提取太湖水位数据。将两者相结合,得到了太湖容积变化和水量平衡数据。据此,分析了太湖水位、面积和容积变化的规律和趋势,并对其影响因素进行了研究。结果表明,太湖面积和容积变化近40年来呈缓慢增长趋势,分别从1975年的2 320.07 km~2和-0.047 0 km~3增长到了2015年的2 341.06 km~2和0.275 9 km3,增长趋势不明显;太湖水位总体上呈波动变化趋势,水位从1975年的0.982 6 m变为2015年的1.135 9 m。因此,太湖水位与面积相关性中等(R2≈0.65),容积变化与面积和水位变化的相关性较高(R~20.85)。太湖水量平衡为正平衡且变化不大,为0.009 2 km~3。入湖水量的增加、年降雨量和年蒸发量的变化及政府"退地还湖"政策是导致太湖发生变化的主要原因。  相似文献   

14.
湖泊水位是湖泊水文观测必不可缺的要素,直接关系到湖泊物质交换和能量平衡,对研究湖泊运动和区域气候环境变化至关重要。为了掌握内陆湖泊水位的变化过程和空间特征,以新疆博斯腾湖为例,综合Jason-1&2、ENVISat&ERS、ICESat-1、ICESat-2等卫星测高资料,提取博斯腾湖湖泊水域瞬时水位和日均水位,并根据Hydroweb水位记录和1975-2020年博斯腾湖湖泊水位观测及水域面积数据,检验Jason-1&2、ENVISat&ERS、ICESat-1、ICESat-2测高数据的估计精度。借助趋势面分析方法,分析博斯腾湖水域水位变化的空间差异和特征。结果表明:Hydroweb水位记录、Jason-1&2、ENVISat&ERS、ICESat-1、ICESat-2卫星资料估计湖泊日均水位的绝对误差分别为0.24、0.34、0.28、0.18、0.08 m;2020年博斯腾湖年均水位为1 048.10±0.12 m,与1975年年均水位相比增加了0.70±0.15 m;湖泊瞬时水位在空间尺度上存在一定水位差,ICESat-2测高数据能准确地描述博斯腾湖水域表面高程和水位变化速率的空间异质性。  相似文献   

15.
由于乌伦古河河川径流具有连续枯水年且枯水时段长的特点,且乌伦古河在连续枯水年份出现断流是一种不可抗拒的自然因素,需要在流域综合规划指导下,具体研究吉力湖和布伦托海入湖水量及水位变化情势,尽可能恢复乌伦古河流域原有生态,保障洄游性鱼类所需要的流量要求,显著减少布伦托海湖水向吉力湖倒灌发生的时间和倒灌水量,使乌伦古湖和周边生态系统有所好转。  相似文献   

16.
湖泊渗漏量是湖泊水量平衡的一项重要因素。湖泊渗漏量计算方法采用水量平衡法,以湖泊月平均水位相应水面面积落差计算蓄水量变化,再考虑引水、用水、蒸发、降水等水量变化,其差值为湖泊渗漏量。采用2003-2012年衡水湖水位、降水量、蒸发量、引水量、用水量等观测资料,筛选出对渗漏量较小的月份,建立月平均水位与月平均渗漏量相关关系,计算出衡水湖年平均单位面积渗漏量为13.1万m^3/km^2。准确计算湖泊渗漏量,对合理开发利用水资源、制定水资源调度方案由重要作用。  相似文献   

17.
洞庭湖湖区最低生态水位的确定   总被引:3,自引:0,他引:3  
为确定洞庭湖湖区最低生态水位,针对洞庭湖湖区复杂、不同湖区差异较大的问题,基于城陵矶、鹿角、南嘴、小河嘴和杨柳潭5个水文站1953—2013年的水文资料,采用天然水位资料法、年保证率法、最低年平均水位法、生态水位法、湖泊形态分析法及最小空间需求法,分别对东洞庭湖、南洞庭湖和西洞庭湖的最低生态水位进行了计算,并与前人关于洞庭湖生态水位的研究成果进行了对比分析。结果表明:东洞庭湖、南洞庭湖和西洞庭湖的最低生态水位分别为22.62 m、27.19 m和28.11 m,相应的湖面面积分别为373.85 km~2、406.88 km~2和142.19 km~2,从保护洞庭湖自然保护区的角度看,确定的最低水位是合理的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号