首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
索风营水电站大坝为全断面外掺MgO微膨胀碾压混凝土重力坝,坝高115.8 m,大坝施工采用左、右2块全断面通仓薄层连续交替上升的施工工艺,由于工期缩短,在高温季节必须施工。如何满足高温季节施工,外加剂应用是关键。根据索风营水电站工程气温高、风大的气候条件和进场水泥温度高的情况,在大坝碾压混凝土施工过程中探索出一套适合于高温季节施工的外加剂配方,使索风营水电站大坝工程在整个施工过程中处于良好的受控状态,确保了工程施工质量。  相似文献   

2.
简要介绍索风营水电站工程大坝碾压混凝土外掺微膨胀剂试验、外掺MgO方法及均匀性控制和均匀性、自生体积变形分析。  相似文献   

3.
索风营水电站大坝为碾压混凝土重力坝,最大坝高115.8 m,为了防止该大坝产生混凝土温度裂缝,负责施工的捌玖联营体在大坝碾压混凝土温度控制上不断探索,提出了相对温度的概念,并采取多种温度控制方式对碾压混凝土浇筑前的温度进行过程控制,以及采用全断面预埋冷却水管对碾压混凝土浇筑前的温升进行有效削峰等措施,很好地控制了碾压混凝土的内外温差与最高温度,满足了大坝混凝土施工的要求,确保了大坝混凝土浇筑的连续上升。  相似文献   

4.
索风营水电站大坝为全段面碾压混凝土大坝,最大坝高115.8m。设计针对该工程特点采用了国内全断面碾压混凝土施工的先进技术及在全段面碾压混凝土施工过程中制定了科学合理的施工技术措施,并在混凝土入仓方式、温度控制、全断面外掺MgO工艺等方面有所创造和发展;同时,对夏季碾压混凝土施工采用埋设PVC冷却水管降低混凝土内外温差进行了大胆尝试。  相似文献   

5.
索风营水电站大坝为碾压混凝土重力坝, 最大坝高115 8m。基于坝址河谷狭窄及基础约束强烈, 为防止坝体出现危害性裂缝, 设计采用有限元三维仿真模拟坝体分缝分层的施工过程对坝体温度应力场进行仿真计算, 从大坝结构设计、混凝土材料选择, 以及施工方法等方面, 加强温度控制。从目前已完成的基础约束区及坝体30万m3 混凝土(其中碾压混凝土18万m3 )浇筑质量来看, 裂缝极少, 且为表层裂缝, 质量良好。  相似文献   

6.
张关会 《小水电》2022,(1):27-29
根据坝址区地形地质条件,对龙潭水电站坝体体型进行优化,节省了工程投资.大坝采用外掺MgO微膨胀混凝土快速修筑拱坝技术,利用其后期的微膨胀特性来补偿混凝土的体积收缩变形,优化了拱坝分缝设计,实现坝体快速通仓浇筑,加快了工程施工进度.表2个.  相似文献   

7.
《红水河》2021,40(3)
河湾水电站大坝为抛物线形混凝土双曲拱坝。为减少坝体内生裂缝,增强大坝的抗渗强度,采用了外掺MgO混凝土技术。通过控制外掺MgO混凝土原材料质量、混凝土拌和质量和混凝土浇筑质量,保证了混凝土质量;设置施工诱导缝,减少坝体应力裂缝;设置分层浇筑层间冷却水管,有效降低混凝土内部温度。质量检测结果表明:外掺MgO混凝土施工质量良好;从钻孔取芯结果来看,坝体混凝土胶结良好,整体性好,无内生裂缝。  相似文献   

8.
水电文摘     
沛吉 《水力发电》2006,32(12):106-106
一个水电开发的新阶段已经开始,索风营水电站碾压混凝土坝采用全断面外掺MgO技术施工,强直螺纹钢筋机械连接技术的优势  相似文献   

9.
温祖国 《四川水力发电》2004,23(3):54-55,60
山口水电站大坝碾压混凝土施工配合比采用中热水泥及高掺粉煤灰技术.夏季经优化配合比.降低混凝土的绝热温升.满足了高温季节不间断施工浇筑的要求。另外.坝体从高程154.0m以上全断面采用三级配碾压混凝土.用三级配变态混凝土在上游形成防渗体.达到了坝体防渗目的。  相似文献   

10.
黄厚农  乔虹 《中国水利》2007,(21):41-43
索风营水电站是乌江流域梯级开发的大型水电站之一。大坝为全断面碾压混凝土,连续浇筑,整体上升,依靠碾压混凝土自身防渗;夏季高温季节在拌和环节上采用风冷骨料,加冷水拌制来控制混凝土的出机和入仓温度;在仓内通过预埋PVC管通冷水降温来降低混凝土内部温升;在强约束区掺入适量氧化镁(MgO),利用氧化镁的微膨胀性补偿碾压混凝土降温收缩,减小因收缩产生的拉应力是该坝施工的主要特点。  相似文献   

11.
为了充分发挥MgO混凝土筑坝技术的优越性,针对某Ⅳ等小(1)型水电站混凝土拱坝工程,依据压蒸原理,进行水泥-粉煤灰-石粉混合浆体试件压蒸试验,据此将MgO的掺量提高到6.5%,并应用于水电站混凝土拱坝工程。结果表明,高掺MgO混凝土进一步提高了坝体混凝土的抗裂能力,简化了大体积混凝土的温控措施,实现了仅设极少诱导缝、不设纵缝、通仓浇筑坝体的混凝土坝体浇筑方式。  相似文献   

12.
光照水电站大坝为目前世界上最高的全断面碾压混凝土重力坝,坝高200.5 m,坝顶总长度410 m,坝底最大宽度159.05 m,体积庞大,浇筑断面大.为了更好地对坝体混凝土进行温度控制,在坝体内全断面埋设冷却水管通水降温,冷却水管埋设与混凝土浇筑同步进行.工程施工工期紧,碾压混凝土浇筑强度大,如何有效地对坝体混凝土进行温度控制便成为一个重要的技术难题.为此,业主、设计、监理、施工四方通过研究讨论采取了一系列的温度控制措施,通过工程实践取得了良好的温控效果.  相似文献   

13.
为促进外掺MgO混凝土的推广应用和深入研究,对贵州省采用全坝外掺MgO混凝土筑坝技术建成1 a以上的8座拱坝的混凝土变形、诱导缝设置与施工等情况进行了总结和分析。分析结果表明:拱坝结构的超静定特性为外掺MgO混凝土在膨胀变化过程中形成预压应力提供了良好的约束环境;按照现行的水泥砂浆压蒸法或一级配混凝土压蒸法确定的MgO掺量制备外掺MgO混凝土,坝体混凝土的实测膨胀量多为50×10~(-6)~150×10~(-6),未完全达到补偿温降收缩所需的设计期望值;设置诱导缝是充分利用外掺MgO混凝土筑坝技术优越性的有效措施;在碾压混凝土中外掺MgO材料,有利于同时发挥碾压混凝土和外掺MgO混凝土快速、经济筑坝的优越性。  相似文献   

14.
介绍了黄花寨水电站碾压混凝土拱坝(坝高110m)枢纽布置、坝体优化、拱坝结构设计、拱坝仿真分析以及基础处理等设计内容。黄花寨水电站碾压混凝土拱坝通过体形优化,在应力分布合理、坝肩稳定的条件下减小了大坝体积,节省了投资;根据仿真分析的结果提出了简单合理的分缝及温控措施,有利于大坝快速碾压.节省了工程建设工期及投资。该大坝是国内第1座坝高超100m全部采用外掺MgO碾压混凝土筑坝技术的拱坝,在材料质量控制及混凝土配合比设计上具有借鉴作用。  相似文献   

15.
公伯峡水电站面板堆石坝应力应变计算   总被引:4,自引:0,他引:4  
陆希 《西北水电》2005,(1):34-38
公伯峡水电站面板堆石坝经过多次的应力、应变计算,对坝体填筑临时渡汛断面、坝体平起填筑、面板一次施工和面板分期施工分别做了计算,初步揭示了不同施工方案对坝体及面板应力、应变的影响。通过有限元计算分析,可以看出公伯峡水电站面板堆石坝是安全、可靠的。  相似文献   

16.
为了促进外掺MgO混凝土的深入研究和推广应用,本文对现行水工混凝土中MgO安定掺量的五种判定方法进行了对比分析。结果表明,根据现行判定方法确定的MgO外掺量生产的MgO混凝土,其自身体积膨胀量很难满足补偿坝体混凝土温降收缩量的需要。对于如何科学合理地提高水工混凝土的MgO掺量,仍然需要深入研究。同时建议,利用实际工程的原材料和混凝土配合比,开展直接根据混凝土试件的自生体积膨胀量来确定水工混凝土中MgO外掺量的研究。  相似文献   

17.
针对坝身开孔后削弱了混凝土坝结构的整体性、孔口周围易产生应力集中并可能导致产生温度裂缝的问题,采用三维有限单元法对底孔坝段施工全过程进行温度应力场仿真研究,计算考虑了通水冷却、混凝土的水化热温升以及弹性模量等对底孔坝段温度和应力的影响,并对比分析了不同方案下坝体温度应力。结果表明:方案4(约束区Tp=18℃,非约束区Tp=22℃,通水冷却)在采取通水冷却和控制混凝土浇筑温度措施后,高程1 624.5~1 631.5 m范围内垫层常态混凝土最高温度为33.8℃,最大温度应力为1.50 MPa;高程1 626.5~1 646.5 m范围内碾压混凝土最高温度为26.8℃,最大温度应力为1.32 MPa;高程1 646.5~1 692.0 m范围内闸室以上常态混凝土最高温度为36.5℃,最大温度应力为1.45 MPa,从而坝段各区域的最高温度均小于允许最高温度,最大应力小于该工程的允许拉应力。研究成果为混凝土坝底孔坝段施工温度控制提供借鉴。  相似文献   

18.
江垭水库大坝是辽宁省水利水电工程局近年来承建的第二座大型碾压混凝土坝,最大坝高128m,碾压混凝土总量114万m~3,占坝体总方量的83.8%.大坝采用全断面碾压混凝土,上游面二级配碾压混凝土防渗,溢流坝段布置中孔和表孔,结构复杂.大坝处于南方暖湿多雨地区,是狭谷中的工程.大坝施工涉及风、水、电、施工道路布置、附属企业布置、坝基开挖、坝体混凝土浇筑、基础处理以及金属结构制安等各个方面,均根据实际情况作了合理的安排.施工受到多种不利因素的影响,精心的施工组织,大量精良装备和人员的投入,维持了施工的高速度.  相似文献   

19.
我国特高面板堆石坝的建设与技术展望   总被引:2,自引:2,他引:0  
国内2000年后已建和在建的200m级高面板堆石坝,从堆石料原岩选择、孔隙率控制、坝体断面分区、面板和趾板防裂控制等设计技术方面及碾压设备选型、坝体预沉降控制、施工填筑分期等施工技术方面,采取了一系列行之有效的措施,取得了坝体变形小、面板裂缝少等成效。借此,对300m级特高面板堆石坝技术作了设想,提出了尚需研究的课题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号