首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
为研究水泵水轮机在泵工况下的内部流态变化对压力脉动和转轮叶片受力的影响,采用 SAS-SST 湍流模型对某一模型水泵水轮机的多个非设计工况进行非定常数值模拟,分析了水轮机 内部流态对导叶与转轮之间无叶区、尾水管内的压力脉动和转轮叶片径向受力的影响。结果表明: 在流量为 40% ~80%设计流量时,导叶区内产生旋转失速,转失速涡团初生于固定导叶进口,并随着流量的降低向活动导叶进口发展,且覆盖区域逐渐增大。旋转失速使压力和过流沿周向不均匀分布, 导致压力脉动和转轮径向受力波动大幅上升。在40%设计流量时,失速涡团发展最为充分,无叶区 压力脉动和转轮受力波动的低频分量幅值最高。旋转失速产生的低频脉动可向尾水管传播,形成的低 频压力脉动幅值约为无叶区低频脉动幅值的10%。当流量低于 40%设计流量时,导叶区旋转失速消失,复杂的涡结构形成的压力脉动低频成分没有周期性。此外,转轮进口的流动分离使尾水管内产生复杂的回流涡结构,导致尾水管内形成频谱丰富的压力脉动; 流量降低使转轮进口回流涡结构的湍动 能增加,导致尾水管内压力脉动幅值大幅上升。小流量工况下,转轮进口的涡结构演变是转轮径向力波动的主要影响因素。  相似文献   

2.
为研究水泵水轮机在泵工况下的内部流态变化对压力脉动和转轮叶片受力的影响,采用SAS-SST湍流模型对某一模型水泵水轮机的多个非设计工况进行非定常数值模拟,分析了水轮机内部流态对导叶与转轮之间无叶区、尾水管内的压力脉动和转轮叶片径向受力的影响。结果表明:在流量为40%~80%设计流量时,导叶区内产生旋转失速,转失速涡团初生于固定导叶进口,并随着流量的降低向活动导叶进口发展,且覆盖区域逐渐增大。旋转失速使压力和过流沿周向不均匀分布,导致压力脉动和转轮径向受力波动大幅上升。在40%设计流量时,失速涡团发展最为充分,无叶区压力脉动和转轮受力波动的低频分量幅值最高。旋转失速产生的低频脉动可向尾水管传播,形成的低频压力脉动幅值约为无叶区低频脉动幅值的10%。当流量低于40%设计流量时,导叶区旋转失速消失,复杂的涡结构形成的压力脉动低频成分没有周期性。此外,转轮进口的流动分离使尾水管内产生复杂的回流涡结构,导致尾水管内形成频谱丰富的压力脉动;流量降低使转轮进口回流涡结构的湍动能增加,导致尾水管内压力脉动幅值大幅上升。小流量工况下,转轮进口的涡结构演变是转轮径向力波动的主要影响因素。  相似文献   

3.
《人民黄河》2016,(9):99-102
为探究长短叶片混流式水轮机在不同导叶开度下运行时内部水流流动的特点,基于流场数值模拟的计算方法对长短叶片混流式水轮机进行了全流道三维非定常湍流计算。结果表明,在不同开度下,转轮与导叶交界面处压力脉动主频皆为转轮转频与叶片数的乘积,且在小流量工况下主频振幅最大。当水轮机在小流量工况下运行时,尾水管涡带呈螺旋形,且绕转轮转轴顺时针旋转,与转轮旋转方向相同;当水轮机在额定工况下运行时,尾水管无涡带产生;当水轮机在大流量工况下运行时,尾水管涡带呈细长的圆锥形。  相似文献   

4.
混流式水轮机弯肘型尾水管在部分负荷工况下产生带气泡的尾水涡流, 涡流在离心力的作用下形成与水流共同旋的涡带,由此产生的低频压力脉动是混流式水轮机面临的一个普遍性问题。水轮机中存在的水力压力脉动现象将诱发转轮叶片疲劳破坏。更有甚者对整个机组、厂房构成威胁, 严重影响了机组的安全稳定运行。本文采用全流道三维非定常流动数值模拟方法, 研究三峡混流式水轮机在部分负荷工况运行时,由尾水管涡带以低频的周期在尾水管内旋进引起的压力脉动现象。采用全流道非定常流动粘性湍流计算,计算结果表明在各记录点都捕捉到了涡带低频压力脉动:频率为0.333Hz, 是转频1.25Hz的3.75分之一,相近工况模型试验实测涡带频率为5.31Hz, 是转频18.62Hz的3.51分之一,从涡带频率看计算结果与试验测量结果一致。  相似文献   

5.
三维非定常湍流尾水管涡带数值模拟   总被引:3,自引:1,他引:2  
采用全流道三维非定常流动数值模拟方法,研究了混流式水轮机在部分负荷工况运行时,尾水管涡带在尾水管内引起的压力脉动现象。计算工况为典型的部分负荷工况,单位转速为70.52r/min, 单位流量为0.679m3/s。计算结果表明在4个计算点都得到了涡带低频压力脉动:频率为0.333Hz, 是转频1.25Hz的1/3.75,相近工况(n11=71.25r/min,Q11=0.689m3/s)模型试验测得涡带频率为5.31Hz, 是转频18.62Hz的1/3.51,从涡带频率看计算结果与试验测量结果一致。研究成果表明数值模拟方法是可行的,可以在设计阶段预测尾水管内涡带压力脉动的特性。  相似文献   

6.
王浩博  周大庆  郭俊勋 《人民长江》2023,(11):152-157+165
为探究水泵水轮机在低负荷工况运行时的异常水力激振现象,基于OpenFOAM软件中的PIMPLE算法,结合SAS-SST湍流模型对水泵水轮机在不同低负荷运行工况的内部流态进行三维数值模拟。与试验数据对比后,证明PIMPLE算法在低负荷工况模拟时具有一定的稳定性和可行性。从模拟结果中可发现:机组在偏离额定工况运行时,无叶区内部易出现低频脉动现象,同时叶片吸力面及出水边均存在回流涡结构。而随着流量增大后,转轮内部流态得以改善,尾水管直锥段处从小开度工况下的偏心螺旋状涡带逐渐向同心圆柱形涡带演变,同时涡带的运动过程一定程度上会影响尾水管进口处流态及压强分布的均匀程度,是诱发尾水旋涡的主要影响因素。  相似文献   

7.
王李科  姚亮  冯建军  朱国俊  卢金玲  阮辉 《水利学报》2024,55(3):344-354,366
为了调节电网的稳定性,抽水蓄能电站需要频繁启停和变换工况运行,导致水泵水轮机容易进入S特性区,机组振动增加,并网失败。本文以模型水泵水轮机为研究对象,采用熵产理论详细分析了S特性区不同工况下的能量损失规律,明确了熵产率分布与内部流动结构的关系。结果表明:S特性区内近飞逸工况总熵产最大,约为设计工况的5.1倍,脉动熵产占据的比例接近80%,随着流量的减小,转轮熵产占比逐渐降低,活动导叶和尾水管的熵产占比增加。小流量工况转轮进口靠近下环位置首先出现了明显的漩涡,导致了活动导叶出口和转轮进口的高熵产区,随着流量进一步减小,漩涡逐渐向上冠转移,并且切向速度增大,在转轮进口形成挡水环,阻碍水流进入转轮,在无叶区内出现了环状分布的高熵产区。反水泵工况,水流在低压边与逆时针旋转的叶片撞击,导致水流很难进入叶片内部,形成了大尺度的回流涡结构;双列叶栅内充满大量涡结构,导致活动导叶吸力面的熵产率增大,并且向固定导叶传播。  相似文献   

8.
水泵水轮机反水泵工况区压力脉动特性分析   总被引:2,自引:1,他引:1  
李琪飞  蒋雷  李仁年  权辉 《水利学报》2015,46(3):350-356
为研究水泵水轮机反水泵区的压力脉动特性,以某抽水蓄能电站模型水泵水轮机为研究对象,基于分离涡湍流方法(detached eddy simulation,DES),对水泵水轮机反水泵工况进行了数值模拟。探讨了全流道三维湍流场特性,并与试验结果相对比,分析了水泵水轮机在反水泵工况区压力脉动特性。结果表明,反水泵工况下,转轮与导叶之间和尾水管内的主频均为0.143倍转频,主频幅值占混频幅值比例分别达到12%和34.6%。通过流场分析,发现尾水管锥管段内的螺旋形涡带结构是导致这种低频脉动的主要原因。同常规运行工况相比,反水泵工况区的不稳定流场会导致压力脉动相对幅值的突增,引起机组剧烈的振动,严重影响机组的安全运行。  相似文献   

9.
应用ANSYS等相关软件对混流式水轮机进行全流道非定常数值模拟,分析了在偏工况下低流量的3种随开度不断变化的工况,模拟由部分负荷区到高部分负荷区的尾水管涡带及压力脉动的变化情况。应用CFD数值模拟,观察到尾水管随导叶不同开度变化时,尾水管涡带由双螺旋涡带到单螺旋涡带至柱状涡带的变化过程,并分析了相应工况之间的压力脉动频率及脉动幅值的变化规律。这对尾水管压力脉动产生机理的深入研究有着十分重要的意义。  相似文献   

10.
混流式水轮机尾水管压力脉动研究综述   总被引:6,自引:0,他引:6  
郑源  汪宝罗  屈波 《水力发电》2007,33(2):66-69
混流式水轮机尾水管压力脉动是造成机组运行不稳定的重要原因,严重的脉动甚至会威胁厂房的安全,而尾水管涡带是产生压力脉动的首要原因。所以,混流式水轮机尾水管涡带的研究对解决压力脉动有着十分重要的意义。为此,就混流式水轮机尾水管压力脉动的研究,即从理论研究、模型实验、数值模拟和真机试验4个方面。重点阐述在部分负荷、满负荷以及超负荷工况下的尾水管涡带特性参数变化的特点,介绍数值模拟方法在解决尾水管振动问题上的优缺点以及目前在真机试验上检测尾水管振动的新方法,从而也提出解决尾水管压力脉动的几个途径。  相似文献   

11.
高水头混流式水轮机减负荷瞬态流动特性研究   总被引:1,自引:1,他引:0  
孙龙刚  徐卓飞  郭鹏程  郑小波 《水利学报》2022,53(11):1369-1382
为了平衡和补偿间歇性可再生能源不定时并网对电网的不利冲击,水轮机不得不频繁地经历减负荷瞬态工况转换过程,从而诱发水轮机内部不稳定的压力脉动及涡流结构。基于多面体网格及动网格技术,开展了高水头混流式水轮机导叶关闭减负荷过程水轮机特征参数响应、压力脉动及涡流演化特性的数值模拟工作。研究发现,采用压力边界条件获得的水轮机水头与试验结果吻合较好,流量结果可信度高。负荷变化过程中,无叶区压力脉动相对变化趋势与导叶运动规律一致,且幅值变化不大。导叶开始及停止运动,引起尾水管内的压力信号发生突变,并逐渐形成低频周期性压力脉动。涡带运动诱发的不稳定压力脉动,是转轮轴向水推力形成的主要原因。在导叶闭合过程中,强度较小的轴对称涡带首先沿轴向和径向拉伸,随后沿轴向收缩。导叶停止运动进入部分负荷工况,直涡结构进一步收缩,演变为细长状双螺旋结构,最后双螺旋涡结构合并成强度较高的单一螺旋状涡带。此外,水轮机负荷的减小使尾水管内出现回流,漩涡运动等不稳定现象。  相似文献   

12.
非定常流弯肘型尾水管不规则压力脉动预测   总被引:3,自引:1,他引:2  
尾水管内螺旋状涡带引起的压力脉动是造成混流式水轮机机组振动的主要原因之一,直接威胁机组的安全运行。为此,提出一种基于CFD数值计算的水轮机尾水管压力脉动数字化预测法,并利用此法对一大型混流式水轮机偏工况下尾水管内水流流动进行了长时间非定常流计算,讨论该工况下尾水管内死水域与涡带的运动规律,预测了尾水管的不规则压力脉动,压力脉动分析结果表明,其波形、频率、相位与实际基本一致。  相似文献   

13.
混流式水轮机尾水管内螺旋形涡带引起的压力脉动是造成混流式水轮机组振动的主要根源之一,严重威胁机组的安全运行.本文基于CFD技术对一大型混流式水轮机尾水管压力脉动进行了数字化预测,文中首先对该水轮机在典型偏工况下尾水管的内流进行了长时间非定常计算,然后详细讨论该工况下尾水管内死水域与涡带的运动规律,并预测了尾水管的不规则压力脉动,最后对压力脉动预测值进行了分析,结果表明其波形、频率、相位与实际基本一致,证明文中压力脉动的预测方法是可行的.  相似文献   

14.
混流式水轮机部分负荷下尾水管压力脉动试验研究   总被引:4,自引:1,他引:3  
通过三峡电厂升水位试验数据分析了混流式水轮机部分负荷下尾水管压力脉动主频的变化趋势,指出了目前两种用于计算尾水管涡带频率的适用性不足。试验数据表明,定水头下尾水管压力脉动主频在部分负荷低负荷段随着水轮机流量的增大有减小的趋势,在部分负荷高负荷段中呈“V”型分布,这种“V”型分布与尾水管固有频率相关;定导叶开度情况下,部分负荷下尾水管压力脉动主频与水头没有必然联系;试验同时表明,部分负荷下尾水管压力脉动对机组稳定性参数具有直接影响,是引起机组稳定性参数变化的主要原因。  相似文献   

15.
混流式水轮机部分负荷下尾水管压力脉动试验研究   总被引:2,自引:0,他引:2  
通过三峡电厂升水位试验数据分析了混流式水轮机部分负荷下尾水管压力脉动主频的变化趋势,指出了目前两种用于计算尾水管涡带频率公式的适用性不足。试验数据表明,定水头下尾水管压力脉动主频在部分负荷低负荷段随着水轮机流量的增大有减小的趋势,在部分负荷高负荷段中呈“V”型分布,这种“V”型分布与尾水管固有频率相关;定导叶开度情况下,部分负荷下尾水管压力脉动主频与水头没有必然联系;试验同时表明,部分负荷下尾水管压力脉动对机组稳定性参数具有直接影响,是引起机组稳定性参数变化的主要原因。  相似文献   

16.
In this article, the three-dimensional unsteady multiphase flow is simulated in the whole passage of Francis hydraulic turbine. The pressure pulsation is predicted and compared with experimental data at positions in the draft tube, in front of runner, guide vanes and at the inlet of the spiral case. The relationship between pressure pulsation in the whole passage and air admission is analyzed. The computational results show: air admission from spindle hole decreases the pressure difference in the horizontal section of draft tube, which in turn decreases the amplitude of low-frequency pressure pulsation in the draft tube; the rotor-stator interaction between the air inlet and the runner increases the blade-frequency pressure pulsation in front of the runner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号