首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Common loons (Gavia immer) staging on the Great Lakes during fall migration are at risk to episodic outbreaks of type E botulism. Information on distribution, foraging patterns, and exposure routes of loons are needed for understanding the physical and ecological factors that contribute to avian botulism outbreaks. Aerial surveys were conducted to document the spatiotemporal distribution of common loons on Lake Michigan during falls 2011–2013. In addition, satellite telemetry and archival geolocator tags were used to determine the distribution and foraging patterns of individual common loons while using Lake Michigan during fall migration. Common loon distribution observed during aerial surveys and movements of individual radiomarked and/or geotagged loons suggest a seasonal pattern of use, with early fall use of Green Bay and northern Lake Michigan followed by a shift in distribution to southern Lake Michigan before moving on to wintering areas. Common loons tended to occupy offshore areas of Lake Michigan and, on average, spent the majority of daylight hours foraging. Dive depths were as deep as 60 m and dive characteristics suggested that loons were primarily foraging on benthic prey. A recent study concluded that round gobies (Neogobius melanostomus) are an important prey item of common loons and may be involved in transmission of botulinum neurotoxin type E. Loon distribution coincides with the distribution of dreissenid mussel biomass, an important food resource for round gobies. Our observations support speculation that energy transfer to higher trophic levels via gobies may occur in deep-water habitats, along with transfer of botulinum neurotoxin.  相似文献   

2.
We used Great Lakes hydrologic data and bird monitoring data from the Great Lakes Marsh Monitoring Program from 1995–2002 to: 1) evaluate trends and patterns of annual change in May-July water levels for Lakes Ontario, Erie, and Huron-Michigan, 2) report on trends of relative abundance for birds breeding in Great Lakes coastal marshes, and 3) correlate basin-wide and lake-specific annual indices of bird abundance with Great Lakes water levels. From 1995–2002, average May, June, and July water levels in all lake basins showed some annual variation, but Lakes Erie and Huron-Michigan had identical annual fluctuation patterns and general water level declines. No trend was observed in Lake Ontario water levels over this period. Abundance for five of seven marsh birds in Lake Ontario wetlands showed no temporal trends, whereas abundance of black tern (Chlidonias niger) declined and that of swamp sparrow (Melospiza georgiana) increased from 1995–2002. In contrast, abundances of American coot (Fulica americana), black tern, common moorhen (Gallinula chloropus), least bittern (Ixobrychus exilis), marsh wren (Cistorthorus palustris), pied-billed grebe (Podilymbus podiceps), sora (Porzana carolina), swamp sparrow, and Virginia rail (Rallus limicola) declined within marshes at Lakes Erie and Huron/Michigan from 1995–2002. Annual abundances of several birds we examined showed positive correlations with annual lake level changes in non-regulated Lakes Erie and Huron/Michigan, whereas most birds we examined in Lake Ontario coastal wetlands were not correlated with suppressed water level changes of this lake. Overall, our results suggest that long-term changes and annual water level fluctuations are important abiotic factors affecting abundance of some marsh-dependent birds in Great Lakes coastal marshes. For this reason, wetland bird population monitoring initiatives should consider using methods in sampling protocols, or during data analyses, to account for temporal and spatial components of hydrologic variability that affect wetlands and their avifauna.  相似文献   

3.
Rainbow smelt are an important prey species for native and introduced salmonines in the Great Lakes. In Lake Huron, rainbow smelt populations are characterized by variable recruitment and year-class strength. To understand the influence of water temperature on reproduction, growth, and survival during larval-fish stages, we sampled spawning tributaries and larval-fish habitats during 2008 and 2009 in St. Martin Bay, Lake Huron. Spawning by rainbow smelt occurred primarily when stream temperatures were between 3 and 10 °C, which resulted in a 7–10-day spawning period during 2008, and a 15–20-day spawning period during 2009. Regardless of these differences in spawning temperatures and duration, peak larval-fish densities during 2008 were double those observed during 2009. Length–frequency analysis of larval-fish populations during both years revealed stream-hatched fish during May and a later emergence of larval rainbow smelt during summer, presumably originating from lake spawning. Warmer bay water temperatures led to earlier emergence of lake-spawned rainbow smelt larvae during 2009. Stream-hatched fish larvae experienced large-scale mortality during May 2008 resulting in a bay population consisting primarily of lake-spawned rainbow smelt larvae, but during 2009 both stream- and lake-hatched cohorts experienced higher survival concomitant with significantly higher mean population growth rates. Higher larval-fish growth rates during 2009 appeared to be density-dependent and facilitated by warmer water temperatures during late June and cooler water temperatures during July. Temperature-mediated differences in annual growth rates and irregular contributions from stream- and lake-hatched fish larvae are important factors affecting survival and abundance of young-of-the-year rainbow smelt in Lake Huron.  相似文献   

4.
A Great Lakes hydrologic response model was used to study the temporal effects of St. Clair River dredging on Lakes St. Clair and Erie water levels and connecting channel flows. The dredging has had a significant effect on Great Lakes water levels since the mid-1980s. Uncompensated dredging permanently lowers the water levels of Lakes Michigan and Huron and causes a transitory rise in the water levels of Lakes St. Clair and Erie. Two hypothetical dredging projects, each equivalent to a 10 cm lowering of Lakes Michigan and Huron, were investigated. This lowering is approximately half the effect of the 7.6 and 8.2 meter dredging projects. In the first case the dredging was assumed to occur over a single year while in the second it was spread over a 2-year period. The dredging resulted in a maximum rise of 6 cm in the downstream levels of Lakes St. Clair and Erie. The corresponding increase in connecting channel flows was about 150 m3s?1. The effects were found to decrease over a 10-year period with a half-life of approximately 3 years. The maximum effects on Lake Erie lagged Lake St. Clair by about 1 year.  相似文献   

5.
The Straits of Mackinac are a unique feature that connects Lake Michigan and Lake Huron into a single hydraulically linked system. With currents of up to 1 m/s and oscillating volumetric transport up to 80,000 m3/s, they play an important role in water quality, contaminant transport, navigation, and ecological processes. We present the first three-dimensional hydrodynamic model of the combined Lake Michigan–Huron, including the Straits of Mackinac at high-resolution, that is able to simulate the three dimensional structure of the oscillating flows at the Straits. In comparison with individual lake models for Michigan and Huron (no connection at the Straits), we are able to isolate the effects of the bi-lake oscillation and have found that although the oscillation (Helmholtz mode) is the dominant forcing mechanism, the flow can be modulated when atmospheric systems are in-phase with water level fluctuations. Furthermore, the area of influence of the Straits is found to extend up to 70 km into each lake, underscoring the need for realistic predictions within the Straits. For the first time, this combined-lake hydrodynamic model provides the capability to investigate and accurately predict flow at the Straits of Mackinac and its effect on Lake Michigan and Huron. This model forms the basis for the next generation of real-time hydrodynamic models being developed for the Great Lakes Coastal Forecasting System, a suite of models designed by the National Oceanic and Atmospheric Administration Great Lakes Environmental Research Laboratory (NOAA/GLERL) that predict hydrodynamic conditions such as currents, temperatures, and water levels in three dimensions.  相似文献   

6.
Coastal wetlands in the Laurentian Great Lakes undergo frequent, sometimes dramatic, physical changes at varying spatial and temporal scales. Changes in lake levels and the juxtaposition of vegetation and open water greatly influence biota that use coastal wetlands. Several regional studies have shown that changes in vegetation and lake levels lead to predictable changes in the composition of coastal wetland bird communities. We report new findings of wetland bird community changes at a broader scale, covering the entire Great Lakes basin. Our results indicate that water extent and interspersion increased in coastal wetlands across the Great Lakes between low (2013) and high (2018) lake-level years, although variation in the magnitude of change occurred within and among lakes. Increases in water extent and interspersion resulted in a general increase in marsh-obligate and marsh-facultative bird species richness. Species like American bittern (Botaurus lentiginosus), common gallinule (Gallinula galeata), American coot (Fulica americana), sora (Porzana carolina), Virginia rail (Rallus limicola), and pied-billed grebe (Podilymbus podiceps) were significantly more abundant during high water years. Lakes Huron and Michigan showed the greatest increase in water extent and interspersion among the five Great Lakes while Lake Michigan showed the greatest increase in marsh-obligate bird species richness. These results reinforce the idea that effective management, restoration, and assessment of wetlands must account for fluctuations in lake levels. Although high lake levels generally provide the most favorable conditions for wetland bird species, variation in lake levels and bird species assemblages create ecosystems that are both spatially and temporally dynamic.  相似文献   

7.
Managers have long embraced the need to maintain diversity as a requisite condition for population and community sustainability. In the case of Great Lakes lake trout, diversity has been severely compromised. The identification of new gamete sources may be beneficial to lake trout reintroduction efforts, particularly in situations where native stocks have been completely extirpated such as in Lake Michigan. Lake trout from Elk Lake, Michigan, are genetically distinct from domestic hatchery strains and historical forms of lake trout from Lake Michigan. Importantly, Elk Lake fish were genetically distinct from Marquette strain lake trout which were previously stocked into Elk Lake. Elk Lake fish were most similar to Lake Michigan basin-derived Lewis Lake (LLW) and Green Lake (GLW) hatchery strains and to historical Lake Michigan populations from the Charlevoix, Michigan area. While all individuals exhibited characteristics of lean form lake trout, the body shape of lake trout from Elk Lake, stocked lean fish from Lake Michigan and Lake Superior wild lean strains from near Isle Royale differed. Elk Lake fish were more fusiform, elongate, and streamlined with a narrower caudal peduncle compared to hatchery lean strains and wild lean forms from the Isle Royale region of Lake Superior. The lake trout population in Elk Lake is a remnant of a now extirpated native Lake Michigan population that was established either by natural colonization or stocking from historical Lake Michigan populations. Elk Lake lake trout is as genetically diverse as other strains used in Great Lakes reintroduction efforts and likely represent a viable gamete source representing genetic diversity lost from Lake Michigan.  相似文献   

8.
On Great Lakes dunes, the link between foredune dynamics and coastal processes is seen in dune responses to changing lake levels. This paper investigates foredune dynamics during a recent period of rising and high lake levels. The study location was an active foredune in P.J. Hoffmaster State Park on the east coast of Lake Michigan, where field data were collected from 2000 through the final destruction of the foredune by wave removal in November 2019. Foredune dynamics were studied with erosion pins, direct observations, photographs, mapping, and on-site wind measurements. Regional climate and lake-level data were obtained from established data collection programs. The response of the foredune to rising lake levels was compared to several models of foredune behavior. During the study, the Lake Michigan-Huron level rose 1.89 m from January 2013 to July 2020. After an early transitional period, foredune activity was characterized by scarp retreat (4–19 m per year) and dune narrowing from 2014 to 2019. When the foredune completely disappeared in November 2019, erosion/scarping began on the next landward dune. The foredune activity fits Olson’s (1958) model for foredune growth and erosion through lake-level cycles. The foredune migration predicted by the revised Davidson-Arnott (2021) model of foredune response to relative water level rise did not occur, most likely because the rate of lake-level rise was too high. The six years of foredune narrowing before wave erosion started affecting the next landward dune represent a time-lag in Lake Michigan dune history models of increased dune activity during high lake-level stands.  相似文献   

9.
The Laurentian Great Lakes are North America's largest water resource, and include six large water bodies (Lakes Superior, Michigan, Huron, Erie, Ontario, and Georgian Bay), Lake St. Clair, and their connecting channels. Because of the relatively small historical variability in system lake levels, there is a need for realistic climate scenarios to develop and test sensitivity and resilience of the system to extreme high lake levels. This is particularly important during the present high lake level regime that has been in place since the late 1960s. In this analysis, we use the unique climate conditions which resulted in the 1993 Mississippi River flooding as an analog to test the sensitivity of Great Lakes hydrology and water levels to a rare but actual climate event. The climate over the Upper Mississippi River basin was computationally shifted, corresponding to a conceptual shift of the Great Lakes basin 10̊ west and 2̊ south. We applied a system of hydrological models to the daily meteorological time series and determined daily runoff, lake evaporation, and net basin water supplies. The accumulated net basin supplies from May through October 1993 for the 1993 Mississippi River flooding scenario ranged from a 1% decrease for Lake Superior to a large increase for Lake Erie. Water levels for each lake were determined from a hydro-logic routing model of the system. Lakes Michigan, Huron, and Erie were most affected. The simulated rise in Lakes Michigan and Huron water levels far exceeded the historically recorded rise with both lakes either approaching or setting record high levels. This scenario demonstrates that an independent anomalous event, beginning with normal lake levels, could result in record high water levels within a 6- to 9-month period. This has not been demonstrated in the historical record or by other simulation studies.  相似文献   

10.
Many nonindigenous species (NIS) present in the Laurentian Great Lakes are expanding their ranges to inland lakes and streams. This study used cladoceran microfossils to examine the invasion history of Eubosmina coregoni, the first known nonindigenous zooplankter to invade Lake of the Woods (LOW), Ontario, Canada. Sediment cores from 16 sites in LOW were used to analyze broad-scale presence/absence of E. coregoni prior to human development (bottom sediment samples) in comparison with present-day distribution (top sediment samples). E. coregoni had the highest relative abundance in the northern and eastern regions of LOW and the abundance of all cladoceran remains was low in the southern region of the lake. A long core (time core) from Clearwater Bay provided a more detailed historical account of E. coregoni's abundance in the northern region of LOW, indicating that E. coregoni was first detected in the lake in the early 1990s, approximately 25 years after it was discovered in the Laurentian Great Lakes. Results obtained in this study have illuminated temporal and spatial patterns of colonization of this inland water body. Study of the early invasion dynamics of NIS in these inland lakes may aid in the prevention of future invasions of taxa that have already altered the food web dynamics in the Laurentian Great Lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号