首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
西藏某水电站位于喜马拉雅地震带和藏中地震带交汇处,岸坡陡峭,坝址区某高边坡对枢纽工程的安全影响最大。为尽快消除该边坡的安全隐患,本文基于Slide软件选用了3条不同类型的地震波,采用Newmark滑块分析方法计算了该边坡在不同地震峰值加速度作用下的动力反应和永久位移,并采用拟静力法对该边坡在设计地震动作用下的稳定性进行了验算。计算结果表明,在设计地震动作用下该边坡是稳定的,随着地震波幅值的增加该边坡产生的总滑移量也在不断的增加;对于不同类型的地震波,虽然输入的地震峰值加速度相同,但地震动参数的差异会影响边坡产生的永久位移。研究结果可为工程单位进行类似边坡工程稳定性分析提供参考依据。  相似文献   

2.
结合NB 35047-2015《水电工程水工建筑物抗震设计规范》,重点研究了基于规范标准设计反应谱、场地反应谱及设定地震的场地相关反应谱确定的动参数下面板堆石坝坝体的动力响应。依托于某面板堆石坝,计算了在上述三种反应谱下坝体的加速度响应、动位移、永久变形、坝坡塑性累计滑移量等指标。计算结果表明:采用设定地震的场地相关反应谱得到的坝体抗震各项指标均高于规范标准设计反应谱和场地反应谱,采用规范标准设计反应谱和场地反应谱确定的动参数进行面板堆石坝的抗震计算结果偏于保守,为面板堆石坝的抗震计算及设计提供参考。  相似文献   

3.
参考国际水电工程的相关要求对以色列Kokhav Hayarden抽水蓄能电站上、下库坝坡进行抗震稳定分析。采用以色列英文版抗震设计规范SI 413—2013确定深厚覆盖层上坝体建基面加速度反应的峰值、加速度设计反应谱和时程输入加速度,进而采用美国规范ASCE 7-05和ICOLD等建议的三种常用拟静力法和拟动力法(Newmark滑块位移法)对建立在深厚覆盖层上的上、下库坝坡进行运行地震和最大设计地震下的抗震安全性复核。由不同允许滑动位移下的拟静力安全系数和坝坡地震滑动位移量计算结果可知,Kokhav Hayarden抽水蓄能电站上、下库坝坡均能满足OBE地震下坝坡位移小于5 cm的工程技术安全控制要求,坝坡抗震设计满足规范要求,上、下库坝坡在OBE和MDE地震下具备良好的抗震稳定性。研究成果对国际工程中深厚覆盖层上土石坝坝坡抗震设计和安全评价具有重要的参考价值。  相似文献   

4.
通过调整设计规范谱参数值,拟合了相应设计规范谱下的不同人工地震波并输入模型,计算得到不同人工地震波输入下的某拟建高心墙堆石坝的地震响应结果。通过对响应结果的对比,发现增大加速度峰值使得坝体的加速度反应极值、永久变形极值以及动孔压极值增大但坝体的加速度放大倍数减小;延长反应谱特征周期值、增大设计反应谱最大值均会使得坝体的加速度反应极值、加速度放大倍数、永久变形极值、动孔压增大。相关结论可供工程抗震计算时选用更加合理的设计规范谱参数值参考。  相似文献   

5.
为了分析某上游式尾矿坝的抗震安全性,采用等价黏弹性理论、Seed液化理论和Newmark滑动变形理论,对尾矿坝的地震动位移、加速度、液化区域、坝坡抗震稳定性及地震永久变形进行计算分析。结果表明:尾矿坝在Ⅶ度设防地震作用下,坝体动位移和加速度分布规律合理,其中水平向和竖向动位移极值分别为6.39和0.72 cm,水平向和竖向动加速度极值分别为4.06和2.64 m/s2;地震液化区域出现在尾水覆盖的滩面浅表层,未影响到整个坝体;地震时坝坡抗滑稳定安全系数最小值为1.09,地震结束后累计永久变形为11.95 cm。除远离坝坡的浅表层坝体出现小范围液化区外,大坝整体抗震安全性能较好,不会出现重大安全问题。  相似文献   

6.
采用有限元软件ABAQUS对高桩码头的地震反应进行了分析,考虑了桩-土动力相互作用、土体和桩板混凝土的动力非线性特征,分析了码头结构在不同地震作用影响下的相对位移、加速度、剪力和弯矩,确定了结构塑性铰出现的时刻和顺序,从而判明结构的屈服机制、薄弱环节以及可能的破坏类型,并在此基础上提出了设计建议.计算表明,桩的地震加速度响应随着高度的增加先增大后减小,桩身各点相对桩底的位移反应峰值从桩底到桩顶逐渐增大,桩身弯矩从桩底到岸坡面先增大后减小,在岸坡面以上,弯矩先减小后增大,最后在桩顶达到峰值,桩顶部的剪力最大.  相似文献   

7.
土石坝地震震害主要表现为震后永久变形,利用永久变形来评价大坝的抗震稳定与安全更为合理可行。本文结合30余座土石坝的震害资料,研究了土石坝的自振周期等基本自振特性,同时对场地地震卓越周期、滑块屈服加速度与大坝最大加速度反应等主要影响因素进行了深入分析,提出了基于土石坝实际震害的永久变形计算公式,并与Makdisi、Sarma等方法的计算值进行比较,该方法具有较好的计算精度。  相似文献   

8.
我国现行码头抗震设计规范采用的单水准抗震设计方法,不能反映不同地震烈度时的抗震性能.采用有限差分软件FLAC 3D,对重力式码头的地震响应和地基状况进行了分析计算,研究重力式码头在不同强度地震作用下地基的超孔隙水压力、超孔压比和码头位移,并用国际航运协会码头结构抗震设计指南所规定的性能设计准则进行了评判.计算表明,在强度较小地震作用下,所分析的重力式码头结构和地基的破坏程度较小,不影响结构的正常使用.在较强地震作用下,沉箱底部置换砂超孔压比增幅较小,置换砂并未液化;码头陆侧回填土层超孔压比增幅较大,回填土层在加速度峰值增加到0.2g后,在不同位置发生液化,沉箱水平及竖向位移在加速度峰值出现后急剧增大,最终导致重力式码头结构发生不同程度的破坏.  相似文献   

9.
选取某抽水蓄能电站工程上水库面板坝,建立了坝体和库区的三维非线性有限元模型,在静动力有限元分析的基础上,采用可靠度动力安全系数法和地震永久变形极限状态法,研究了上库坝体的极限抗震能力。采用可靠度动力安全系数法,计算表明地震峰值加速度为760.6cm/s~2时下游坝坡已达到安全极限;采用地震永久变形极限状态法,计算表明地震峰值加速度为795.7 cm/s~2时坝体达到永久变形极限状态,由此确定上库坝体的极限抗震能力是当地震动峰值加速度760cm/s~2时。研究分析认为,该两种方法均可用以计算坝体的极限抗震能力。  相似文献   

10.
针对一阶梯式复杂土层边坡,采用人工修正的加速度时程作为地震输入条件,引入三量放大系数对土坡坡面质点进行地震时程响应分析,并采用Newmark滑块分析法和有限元动力时程分析法计算其稳定性.计算结果表明,在水平地震波作用下,阶梯式土坡坡面质点的水平位移和水平速度随距坡脚的沿坡面距离的增大而增大,且最大值都出现在坡顶,地震加速度放大系数呈不规则分布,受地震累积效应影响,土坡坡面质点三量响应滞后于地震波谱变化;拟静力法计算的安全系数偏保守,有限元动力时程分析法和Newmark法计算后通过处理的各项安全系数结果相近.  相似文献   

11.
地震作用下呷爬滑坡的变形特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
运用有限差分软件FLAC~(3D),建立了呷爬滑坡体三维模型,分别施加1倍和3倍El-Centro地震波。计算结果表明,1倍地震波作用下会发生一定的永久位移,但不会滑动失稳;3倍地震波作用下将发生滑动失稳。进一步发现边坡在1倍和3倍地震波激励下的变形滑移特征不同,第一种情况属于累积效应阶段,变形主要集中于滑体Ⅲ,第二种情况属于触发效应阶段,滑体Ⅰ的滑动变形同样剧烈。文中从滑坡体的组成物质和材料参数、滑动区域的地形因素和滑动区域的动力响应三方面进行了分析。运用Newmark有限滑动位移法,基于滑体Ⅰ和滑体Ⅲ的加速度响应时程,计算了两者的永久位移,结果与数值计算吻合良好。表明滑体Ⅲ处的动力响应会产生更大的永久位移,从而验证了数值计算的结果。同时,基于结构动力响应而计算得到的永久位移也可以作为衡量地震作用对该处结构变形影响的指标,从而估计地震对局部结构的破坏作用。  相似文献   

12.
为了开展高拱坝-地基体系整体稳定地震易损性分析,从坝肩潜在滑块滑动失稳破坏模式出发,综合考虑了地震动和材料参数的不确定性,采用增量动力分析方法(Incremental Dynamic Analysis,IDA),开展了基于概率统计框架的1000次非线性动力响应分析。分别采用特征点残余滑动位移和滑动面积比作为评价结构响应的性能指标,以地震动峰值加速度(peak ground acceleration,PGA)为地震动强度指标,定量的划分了高拱坝-地基体系的不同性能水平,绘制了地震易损性曲线,并对不同极限状态下的地震易损性进行了评估和分析。结果表明,基于特征点残余滑动位移的IDA曲线可以将高拱坝-地基体系分别划分为局部滑动破坏和整体滑动失稳破坏两个破坏等级;基于滑动面积比的IDA曲线可以划分为轻微滑动破坏、中等滑动破坏和整体滑动失稳破坏三个破坏等级;从而根据高拱坝-地基体系的实际地震需求从概率意义上评判结构所处的破坏状态,为高拱坝的抗震优化设计、加固和维修决策提供科学依据。  相似文献   

13.
在进行高边坡抗震设计分析时,采用动力有限元数值模拟法较为普遍。但当地震作用致使边坡岩体部分已进入塑性状态且变形加大时,若仍然采用线弹性方法来分析,则存在较大误差。为此,采用弹塑性动力方法计算静力与地震动全平衡状态的弹塑性边坡地震响应,对岩质边坡弹塑性动力状态进行了尝试性探讨,分别输入2条等峰值加速度、不同特征周期和持续时间的地震波,结合边坡的固有频率特性,着重分析常用于抗震设计的地震动参数峰值加速度及累积塑性应变的地震响应规律。结果表明,输入相同峰值、不同特征周期和持续时间的地震波,地震响应累积塑性应变有明显差异;对地震波来说,尽管峰值相同,但持续时间与频谱特性不一样,地震效应存在较大差异。因此,在进行边坡抗震设计计算时,地震波选取一定要慎重,应具体问题具体分析,否则有可能得到不真实的抗震安全评价结果。  相似文献   

14.
为分析研究地震作用下斜坡的稳定性,采用Phase2有限元软件,建立考虑最不利荷载对斜坡稳定性影响的数值模型,分析地震水平峰值加速度0.1 g条件下不同监测位置模拟的位移和地震加载时间关系曲线以及斜坡位移场、应力场和剪应变增量的变化情况。研究表明受水平地震加速度的影响,坡面法向应力减小,下滑力增加,沿着滑动面向下移动;斜坡中部位移极值达到0.36 mm,地震加载时间4 s时处于失稳状态。随着地震加载时间的增加,斜坡发生累计破坏效应,强震作用下斜坡最易于发生瞬时溃滑。  相似文献   

15.
拉哇面板堆石坝位于金沙江上游基本烈度达Ⅷ度的强震区,为评价其极限抗震能力,采用堆石体地震残余变形、坝坡动力稳定、面板应力以及面板脱空等指标,研究了规范反应谱、坝址一致概率反应谱以及设定地震反应谱等不同反应谱在不同峰值加速度下大坝的地震动反应。结果表明:在同一反应谱下随着峰值加速度的提高,大坝的动力反应逐渐增大;不同反应谱在相同峰值加速度下大坝的动力反应呈现较大差异。一致概率反应谱条件下大坝的加速度反应、面板脱空量、堆石体残余变形和下游坝坡的滑动都明显大于规范谱和设定地震谱;设定地震谱下的大坝动力反应则略高于规范反应谱。结合反应谱的生成方式,宜选取设定地震反应谱对拉哇面板堆石坝的极限抗震能力进行评价。计算得到拉哇面板坝的极限抗震能力在0.55g~0.6g。  相似文献   

16.
The seismic stability of a cracked dam was examined in this study. Geometric nonlinearity and large deformations, as well as the contact condition at the crack site, were taken into consideration. The location of penetrated cracks was first identified using the concrete plastic-damage model based on the nonlinear finite element method (FEM). Then, the hard contact algorithm was used to simulate the crack interaction in the normal direction, and the Coloumb friction model was used to simulate the crack interaction in the tangential direction. After verification of numerical models through a case study, the seismic stability of the Koyna Dam with two types of penetrated cracks is discussed in detail with different seismic peak accelerations, and the collapse processes of the cracked dam are also presented. The results show that the stability of the dam with two types of penetrated cracks can be ensured in an earthquake with a magnitude of the original Koyna earthquake, and the cracked dam has a large earthquake-resistant margin. The failure processes of the cracked dam in strong earthquakes can be divided into two stages: the sliding stage and the overturning stage. The sliding stage ends near the peak acceleration, and the top block slides a long distance along the crack before the collapse occurs. The maximum sliding displacement of the top block will decrease with an increasing friction coefficient at the crack site.  相似文献   

17.
乌拉泊水库土石坝振动台模型试验研究   总被引:2,自引:0,他引:2  
通过进行不同台面地震动峰值加速度输入的振动模型试验,研究了随地震动峰值加速度增大时土石坝动力特性的变化规律。此外,通过对模型不同工况振动前、后微振试验得到的动力特性比较,研究了先期振动等因素的影响。这些成果可供大坝抗震加固设计参考使用,也是验证和改善地震动力反应方法和计算程序的宝贵资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号