首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few comprehensive studies on stream assessment and biomonitoring have been conducted in tropical, freshwater watersheds. Currently under threat from climate change, urbanization and increasing freshwater demands, there is a need for innovative approaches to tropical watershed assessment and management. This study investigated cascade habitat macroinvertebrate communities among four tropical mountain streams with the goal of enhancing future efforts to identify flow biocriteria for watersheds of Polynesia. Cascade macroinvertebrate communities were compared between streams of differing size and magnitude of flow removal to evaluate the biological effects of water withdrawal on benthic communities. Two cascade microhabitats, identified as torrenticolous and amphibious, were evaluated for macroinvertebrate community differences and presence of native taxa among watersheds. Cascade habitat in general was reduced, by as much as 98%, in downstream reaches, having a significant impact on the stream ecosystem physical template important for native stream communities. In addition, two‐way ANOVA results revealed no main effects, but significant interactions of watershed size and flow removal on mean macroinvertebrate density for torrenticolous microhabitats; however, the opposite was true for the amphibious microhabitat. Diversity was significantly higher under undiverted flow conditions (t = 4.21, df = 272, p = 0.0004) and in torrenticolous microhabitats (t = 3.86, df = 272, p < 0.0001) over the entire study period. The amphibious microhabitat was composed of 39% native taxa, while the torrenticolous microhabitat contained <7%. This study provides new options for biomonitoring of native populations in Polynesian watersheds. Further studies that support the development of in‐stream flow criteria to preserve cascades are important to understanding the role of this habitat in tropical stream ecosystem function. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The continual demand for freshwater by industry (e.g. tourism) and agriculture, a growing population, and increasing development over the past 100 years has resulted in the construction of diversions within many streams of Hawaii. The main objective of this study was to evaluate the impact of stream diversions on riffle macroinvertebrate communities. Benthic macroinvertebrate larval populations were compared above and below a diversion in Iao Stream, Maui, Hawaii, from April to August 2000. During this summer approximately 92–97% of daily stream flow was diverted from Iao Stream. Three taxa, Procanace sp. (Diptera: Canacidae), Atyoida bisulcata (Crustacea: Decapoda), and Amphipoda (Crustacea), were only collected above the diversion. However, the most numerous taxa, Chironomidae (63–64% of the total macroinvertebrate community), Hydroptila arctia (Trichoptera: Hydroptilidae; 15%), and Cheumatopsyche pettiti (Trichoptera: Hydropsychidae; 8%), were found both above and below the diversion. The relative percentage abundance of these dominant taxa remained relatively consistent above and below the diversion over the study period. However, the mean total density of individual dominant taxa was greater above the diversion. The mean total macroinvertebrate density above the diversion was 46% greater than below the diversion (Student t‐test: df = 30, t = ?3.22, p > 0.01). No correlation was found between temperature and density. A positive correlation was detected between Froude number and mean total macroinvertebrate density. Overall, the reduction in macroinvertebrate diversity and in individual and total density below the diversion suggest that trophic interactions, and thus energy flow, could be affected by reduced flow in Hawaiian streams. The information gained from this study will contribute to knowledge on Hawaiian stream ecosystems, help to create minimum instream flow standards for stream restoration, and will provide information for future freshwater management issues on the Hawaiian islands. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Tropical island streams worldwide are threatened by existing or proposed dams and diversions that remove freshwater for human use; yet, there have been few studies that address the effects on aquatic communities. The objective of this study was to quantify changes in tropical macroinvertebrate communities associated with stream flow withdrawal. Benthic macroinvertebrates were collected from riffle habitats located above and below a stream diversion on Maui, Hawaii, from June to August 2000. Native and introduced taxa were identified from both locations. The most dominant taxon was midges (Diptera: Chironomidae) followed by two introduced caddisflies, Cheumatopsyche analis (Banks) (Trichoptera: Hydropsychidae) and Hydroptila potosina (Buenoa‐Soria) (Trichoptera: Hydroptilidae). A native shrimp, Atyoida bisulcata, and beach fly, Procanace sp. (Diptera: Canacidae), were either eliminated from or significantly reduced below the diversion. Mean total macroinvertebrate densities were greater above (13 357 individuals/m2) the diversion compared to below (10 360 individuals/m2). Mean total macroinvertebrate biomass was significantly reduced by 60 per cent below the diversion, but specific taxa did not show this effect. These results suggest that diverted stream flow limited macroinvertebrate colonization and growth, expressed as reduced community density and biomass, which may alter the structure and function of other trophic levels within tropical stream food webs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Composition and structure of macroinvertebrate communities were documented in relation to hydrochemical variables over a 10‐month period in four headwater tributaries of the Futaleufú River, northwestern Chubut, Argentina. The streams are located along the strong rainfall gradient that decreases from west to east and they have different basin features. At Blanco and Baggilt streams, riparian vegetation consisted primarily of native Nothofagus forest, while in the Nant y Fall and Rifleros, basins with a long legacy of domestic grazing, the introduced Salix fragilis was the dominant riparian species. Macroinvertebrate species richness, density, and biomass were similar among rivers; however, biomass of shredders was highest in the Nothofagus forested streams and collector‐filterers were significantly higher in Salix fragilis‐bordered rivers. Water temperatures were higher in non‐native Salix sites than in the native or mixed forested sites. Canonical community analysis indicated community composition was related to geomorphic attributes of the rivers, especially slope, basin height (elevation change), distance to the source, substratum size, and Salix coverage. Moreover, seasonally dynamic variables, rainfall and water temperature were good community predictors. Land‐use change (conversion from Nothofagus to pastures and the Salix fragilis invasion in the riverbanks of pasture‐dominated catchments) was interactive with natural stream attributes as determinants of macroinvertebrate distribution and abundance. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Riparian forests and streams are interlinked by cross‐system subsidies and alterations of the terrestrial environment can have substantial effects on aquatic biota and ecosystem function. In the Midwestern USA, the exotic shrub Lonicera maackii (Amur honeysuckle) has successfully invaded many riparian habitats, creating near‐monocultures in some locations. This terrestrial invasion has strong potential to modify cross‐system subsidies and impact stream ecosystems. We removed L. maackii from a riparian forest to assess impacts on the aquatic environment. In August 2010, removal occurred along a 150 m stream reach, 10 m downstream of a non‐removal reach, before natural leaf senescence. Over 74 days, in‐stream leaf litter [organic matter (OM)] was collected weekly from plots located in riffles (five/reach). Benthic algal biomass, above stream canopy cover, and macroinvertebrate density were measured for 18 months. L. maackii removal was associated with decreased canopy cover and a significant increase in total in‐stream leaf OM in early autumn (P < 0.05). Removal also differentially influenced the timing and abundance of specific leaf litter genera within the stream (P < 0.05). Macroinvertebrate density was significantly higher in the removal reach, especially during autumn 1 year after removal (P = 0.0294). In both reaches, macroinvertebrate density peaks lagged behind benthic algal biomass peaks. In summary, the removal of an invasive riparian shrub influenced the timing, deposition, quality and abundance of leaf litter habitat into a headwater stream, ostensibly driving bottom‐up effects on aquatic primary producer biomass and the macroinvertebrate community. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A habitat‐based aquatic macroinvertebrate study was initiated in the Lower Missouri River to evaluate relative quality and biological condition of dike pool habitats. Water‐quality and sediment‐quality parameters and macroinvertebrate assemblage structure were measured from depositional substrates at 18 sites. Sediment porewater was analysed for ammonia, sulphide, pH and oxidation–reduction potential. Whole sediments were analysed for particle‐size distribution, organic carbon and contaminants. Field water‐quality parameters were measured at subsurface and at the sediment–water interface. Pool area adjacent and downstream from each dike was estimated from aerial photography. Macroinvertebrate biotic condition scores were determined by integrating the following indicator response metrics: % of Ephemeroptera (mayflies), % of Oligochaeta worms, Shannon Diversity Index and total taxa richness. Regression models were developed for predicting macroinvertebrate scores based on individual water‐quality and sediment‐quality variables and a water/sediment‐quality score that integrated all variables. Macroinvertebrate scores generated significant determination coefficients with dike pool area (R2 = 0.56), oxidation–reduction potential (R2 = 0.81) and water/sediment‐quality score (R2 = 0.71). Dissolved oxygen saturation, oxidation–reduction potential and total ammonia in sediment porewater were most important in explaining variation in macroinvertebrate scores. The best two‐variable regression models included dike pool size + the water/sediment‐quality score (R2 = 0.84) and dike pool size + oxidation–reduction potential (R2 = 0.93). Results indicate that dike pool size and chemistry of sediments and overlying water can be used to evaluate dike pool quality and identify environmental conditions necessary for optimizing diversity and productivity of important aquatic macroinvertebrates. A combination of these variables could be utilized for measuring the success of habitat enhancement activities currently being implemented in this system. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

7.
Nearly 400 rock rip‐rap grade control structures (hereafter GCS) were recently placed in streams of western Iowa, USA to reduce streambank erosion and protect bridge infrastructure and farmland. In this region, streams are characterized by channelized reaches, highly incised banks and silt and sand substrates that normally support low macroinvertebrate abundance and diversity. Therefore, GCS composed of rip‐rap provide the majority of coarse substrate habitat for benthic macroinvertebrates in these streams. We sampled 20 sites on Walnut Creek, Montgomery County, Iowa to quantify macroinvertebrate assemblage characteristics (1) on GCS rip‐rap and at sites located (2) 5–50 m upstream of GCS, (3) 5–50 m downstream of GCS and (4) at least 1 km from any GCS (five sites each). Macroinvertebrate biomass, numerical densities and diversity were greatest at sites with coarse substrates, including GCS sites and one natural riffle site and relatively low at remaining sites with soft substrates. Densities of macroinvertebrates in the orders Ephemeroptera, Trichoptera, Diptera, Coleoptera and Acariformes were abundant on GCS rip‐rap. Increases in macroinvertebrate biomass, density and diversity at GCS may improve local efficiency of breakdown of organic matter and nutrient and energy flow, and provide enhanced food resources for aquatic vertebrates. However, lack of positive macroinvertebrate responses immediately upstream and downstream of GCS suggest that positive effects might be restricted to the small areas of streambed covered by GCS. Improved understanding of GCS effects at both local and ecosystem scales is essential for stream management when these structures are present. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Many studies have investigated the ecological changes that occur below dams that release cold, hypolimnetic water, but very few studies have looked at the effects of the release of warm, surface waters. The effect of small, surface release dams on downstream thermal regimes is a major habitat concern for many cold‐water systems, however. The objective of this study was to examine the effects of summer temperature increases due to impoundment on downstream fish and macroinvertebrate communities in cold‐water streams. We sampled fish, macroinvertebrates and habitat upstream and downstream of dams on ten rivers during the summers of 1998 and 1999. Changes in mean summer temperature downstream varied from a cooling of 1 °C to an increase of more than 5 °C. Increasing temperatures downstream coincided with lower densities of several cold‐water fish species, specifically brown trout (Salmo trutta), brook trout (Salvelinus fontinalis) and slimy sculpin (Cottus cognatus) while overall fish species richness increased downstream. Density of mottled sculpin (Cottus bairdi), another cold‐water species, was not related to temperature changes below the dams. Macroinvertebrates showed shifts in community composition below dams that increased temperature. This study provides information useful for determining the extent of impact of these small, surface release dams, which are abundant across the country. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Dams and water diversions can dramatically alter the hydraulic habitats of stream ecosystems. Predicting how water depth and velocity respond to flow alteration is possible using hydraulic models, such as Physical Habitat Simulation (PHABSIM); however, such models are expensive to implement and typically describe only a short length of stream (102 m). If science is to keep pace with development, then more rapid and cost‐effective models are needed. We developed a generalized habitat model (GHM) for brown and rainbow trout that makes similar predictions to PHABSIM models but offers a demonstrated reduction in survey effort for Colorado Rocky Mountain streams. This model combines the best features of GHMs developed elsewhere, including the options of desktop (no‐survey) or rapid‐survey models. Habitat–flow curves produced by PHABSIM were simplified to just two site‐specific components: (i) Q95h (flow at 95% of maximum habitat) and (ii) Shape. The Shape component describes the habitat–flow curves made dimensionless by dividing flow increments by Q95h and dividing habitat (weighted usable area) increments by maximum habitat. Both components were predicted from desktop variables, including mean annual flow, using linear regression. The rapid‐survey GHM produced better predictions of observed habitat than the desktop GHM (rapid‐survey model explained 82–89% variance for independent validation sites; desktop 68–85%). The predictive success of these GHMs was similar to other published models, but survey effort to achieve that success was substantially reduced. Habitat predicted by the desktop GHM (using geographic information system data) was significantly correlated with the abundance of large brown trout (p < 0.01) but not smaller trout. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Several recent studies have demonstrated that a functional approach (i.e. analysis of traits indicating species ecological functions) can be successfully used for river biomonitoring. To date this approach has only been applied in temperate rivers, even though it could notably contribute toward the development of an environmental assessment system in developing countries in other climatic zones. Using a multivariate approach (Fuzzy Correspondence Analysis—FCA), we analysed functional invertebrate community characteristics (described by 40 categories of seven biological traits mostly at the family level) at 66 stream sites from neotropical Bolivia with different level of anthropogenic disturbance. We were able to separate the sites on the first FCA axis (F1) (ANOVA test) following the predefined environmental quality classes based on the observed impact. Moreover, the F1 axis scores were significantly related to scores obtained using an independent macroinvertebrate multi‐metric index previously developed to assess streams biotic condition in the same biogeographical region. The F1 axis, which thus represents a gradient of anthropogenic impacts, was significantly correlated to 30 of the 40 studied trait categories. Our results (i) clearly confirm the possible use of functional traits for water quality assessment in neotropical streams, and (ii) provides support to the River Habitat Templet hypothesis since habitat disturbances produced predictable functional changes in macroinvertebrate assemblages. Finally, this study supports the potential worldwide applicability of the species‐trait approach as a biomonitoring tool for stream integrity assessment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The causes of degradation of aquatic systems are often complex and stem from a variety of human influences. Comprehensive, multimetric biological indices have been developed to quantify this degradation and its effect on aquatic communities, and measure subsequent recovery from anthropogenic stressors. Traditionally, such indices have concentrated on small‐to medium‐sized streams. Recently, however, the Ohio River Fish Index (ORFIn) was created to assess biotic integrity in the Ohio River. The goal of the present project was to begin developing a companion Ohio River multimetric index using benthic macroinvertebrates. Hester–Dendy multiplate samplers were used to evaluate benthic macroinvertebrate assemblages in relation to a gradient of water quality disturbance, represented by varying distances downstream of industrial and municipal wastewater outfalls in the Ohio River. In August 1999 and 2000, samplers were set every 100 m downstream of outfalls (12 outfalls in 1999, 22 in 2000) for 300–1000 m, as well as at upstream reference sites. Candidate metrics (n = 55) were examined to determine which have potential to detect changes in water quality downstream of outfalls. These individual measures of community structure were plotted against distance downstream of each outfall to determine their response to water quality disturbance. Values at reference and outfall sites were also compared. Metrics that are ecologically relevant and showed a response to outfall disturbance were identified as potentially valuable in a multimetric index. Multiple box plots of index scores indicated greater response to outfall disturbance during periods of low‐flow, and longitudinal river‐wide trends. Evaluation of other types of anthropogenic disturbance, as well as continued analysis of the effects of chemical water quality on macroinvertebrate communities in future years will facilitate further development of a multimetric benthic macroinvertebrate index to evaluate biotic integrity in the Ohio River. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500‐m river reaches was sampled repeatedly with several techniques (boat‐mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non‐native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non‐native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species‐specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Urbanization and its associated stressors such as flow alteration, channel modification and poor water quality is a leading cause of ecological degradation to rivers and streams. Driven by public concern to address this issue, there has been a dramatic increase in urban restoration projects since 1990 using in‐stream structures. Attempts at restoring the ecological condition of urban streams using structures have produced varied results, but projects do not often meet planned ecological goals. A major challenge to improving the ecological health of urban streams is to better understand how to incorporate ecological assessments into a ‘restoration’ design framework with reasonable expectations for ecological recovery. A naturalization design framework was used in a project on a 0.62‐km reach of the North Branch of the Chicago River in Northbrook, Illinois. Initial surveys of channel morphology, habitat and biota identified poor pool‐riffle bed structure and fish biodiversity, which became the basis for research and development of a pool‐riffle structure specifically designed for constrained, low‐gradient channels. Habitat and fish surveys were conducted pre‐ and post‐construction. The project improved mesohabitat structure, and fish abundance, and biomass and diversity were greater for 2 years following construction (2002–2003) compared to 3 years prior to construction (1999–2001). However, the improved fish metrics were in the low range when compared to rural streams in the same ecoregion, and the fish community consisted primarily of tolerant, slow‐water species. Absent were intolerant and riffle dwelling species, such as insectivorous cyprinids and darters. Assessment of pre‐ and post‐project ecological condition and the use of species information provided a basis for ecologically informed design and expanded our understanding of the limitations to restoring urban streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Depending on intensity, physical disturbance can either decrease or increase diversity of stream macroinvertebrate communities. Recreational activities in parks are one component of physical disturbance. Our objective was to evaluate the effects of stream crossings and recreational traffic on macroinvertebrate assemblages. Five stream‐crossing sites were sampled during winter and summer in the Current River, Ozarks National Scenic Riverways, Missouri, USA. Stream‐crossing traffic was assessed using trail cameras. At each site, macroinvertebrates were collected from four locations: riffle upstream of crossing, riffle immediately downstream of crossing and second and third riffles downstream of crossing. We compared sites and locations within sites using standard metrics (taxa richness, Ephemeroptera, Plecoptera and Trichoptera richness, biotic index and diversity) and their composite stream condition index (SCI) plus multivariate analyses (Nonmetric multidimensional scaling and correlations). Stream crossings had no detectable impacts on macroinvertebrate communities in winter, but in summer location, effects were present. Patterns in SCI scores across locations varied among sites, with no consistent declines in macroinvertebrate diversity downstream of crossings. Longitudinal stream effects dominated over potential stream‐crossing effects on macroinvertebrate communities. Overall, high SCI scores indicated that current levels of stream crossings and traffic in this scenic riverway do not pose a threat to macroinvertebrate communities at the spatial and temporal scale of this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Past and current pressure on streams and rivers for consumptive use requires the development of tools and decision‐making processes for water managers to minimize impacts on ecological function. This paper examines the utility of modeling benthic biomass in relation to benthic macroinvertebrate (BMI) community attributes for water resource management scenarios in the Cliff‐Gila Valley of the Gila River, New Mexico, USA. The river benthos biomass model (RivBio) was used in conjunction with hydraulic modeling to predict growth and decline of benthic biomass. BMI community attributes were compared along gradients of hydrologic impact (successive existing diversions) in the Cliff Gila Valley and were compared to community attributes in similar regional streams. Benthic biomass was minimally affected by proposed diversions at flows above 4.25 cms (150 cfs), but was severely reduced downstream because of existing diversions during lower flow periods. Riffle habitat was disproportionately affected during extreme low and interrupted flow, which may have resulted in BMI communities shifted towards multi‐habitat generalists that can persist in lentic conditions. Flow augmentation from proposed diversions and storage would greatly mitigate these existing biomass losses by providing consistent base flow and lotic conditions in riffle habitat. Both benthic biomass and BMI community endpoints were useful when comparing water management scenarios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Riparian vegetation development and macroinvertebrate assemblages were studied in 16 streams formed between 35 and 230 years ago, following glacial recession in Glacier Bay National Park, southeast Alaska. Riparian vegetation established most rapidly in streams where flow variation in downstream reaches was buffered by a lake. Riparian vegetation development was positively correlated with lower bank stability, but was independent of stream age. Roots and branches of riparian vegetation trailing into streams (trailing riparian habitat—TRH) were shown to be an important habitat for a number of macroinvertebrate taxa. In young and unstable streams, TRH was colonized mainly by Plecoptera whereas in more stable lake‐influenced streams Simuliidae dominated. Significant coarse woody debris (CWD) accumulations were not observed until after approximately 130 years of stream development had occurred when certain channel features, such as gravel bars, were stabilized by dead wood. Where dead wood was present, opportunistic wood taxa were abundant, even in the younger streams. However, a xylophagous species, Polypedilum fallax, was not recorded until streams were over 100 years old. Two‐way indicator species analysis (TWINSPAN) using presence/absence of macroinvertebrate taxa on TRH, initially divided streams into lake and non‐lake systems, but subsequent divisions were consistent with differences in stream age. TWINSPAN of macroinvertebrate assemblages on dead wood again highlighted differences in stream age. Canonical correspondence analysis indicated that bed stability and stream age were the most important environmental variables influencing macroinvertebrate distribution on TRH. Trailing riparian habitat was most abundant in moderately unstable streams where it facilitates invertebrate colonization. CWD contributes markedly to channel stabilization, provides habitat for invertebrate xylophages, and confers additional habitat complexity. Maximum levels of CWD are predicted to occur in non‐lake streams after approximately 300 years, but at least a further 100 years will be required in stable streams below lakes where dead wood entrainment is not enhanced by flooding, channel migration and bank undercutting. A conceptual model summarizing the role of TRH and CWD on stream development in Glacier Bay is presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The effects of flow regulation on macroinvertebrates and periphytic diatoms were examined in the Hawkesbury–Nepean River system in Australia. Regulated sites below eight dams or weirs were compared with unregulated sites above the impoundments and sites on two nearby unregulated streams. The management of the water supply during the study created two types of flow regulation, sites with water supply releases and sites with comparatively small or no releases. The macroinvertebrate communities in three habitats and periphytic diatoms below the storages and weirs differed from the biota at unregulated sites above the weirs and on unregulated systems. The number of macroinvertebrate taxa in riffle and pool‐rock assemblages was significantly lower at regulated sites when compared with unregulated sites and the number of stream edge macroinvertebrate and diatom taxa was unaffected by regulation. Riffle and pool‐rock macroinvertebrate assemblages differed between the two types of regulation. However, periphytic diatom and edge habitat macroinvertebrate assemblages did not differ between the two types of flow regulation. Examination of environmental variables associated with the change in the biota suggested that the principal effect of the management of the water supply system in the Hawkesbury–Nepean River was changed hydrology rather than altered water quality. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
We developed predictions of habitat quantity and quality for three life stages of rainbow trout, Oncorhynchus mykiss, across a range of stream sizes characterized by mean annual discharge of 1 to 50 m3 s?1. The physical habitat template was created by nesting a reach‐scale two‐dimensional hydrodynamic model (River2D) within a downstream hydraulic geometry system using published coefficients for low‐gradient and high‐gradient watersheds. This provided both longitudinal and transverse estimates of depth and velocity profiles that, when combined with habitat suitability curves for the life stages, resulted in predictions of habitat quantity (weighted usable area) and habitat quality (the proportion of the stream profile that provided useable habitat) for rainbow trout along the stream continuum. Habitat quantity increased asymptotically for all life history stages but increased more rapidly in the low‐gradient watershed. Habitat quality decreased non‐linearly for young‐of‐the‐year and peaked at intermediate stream sizes for juveniles in both low‐gradient and high‐gradient watersheds. Adult habitat quality peaked in the high‐gradient watershed but increased asymptotically in the low‐gradient watershed, presumably due to lower mean velocities at larger stream sizes. Incorporation of transverse variation in depth and velocity in our physical habitat template provides a more realistic representation of habitat quantity and quality than do earlier assessments based on simple modal estimates of depth and velocity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The objective of this paper is to determine the alteration of the taxonomic composition and functional structure of macroinvertebrate community associated with a massive growth of the invasive algae Didymosphenia geminata downstream of a mountain reservoir (Pajares Reservoir, La Rioja, Northern Spain). As the massive growth of the alga disappears a few kilometres downstream of the reservoir associated with the input of nutrients from a nearby village sewage, we may compare the community composition between nine stations in three different conditions: three stations heavily affected by the presence of D. geminata, three further downstream stations without the algal massive growth but affected by river regulation and three control stations (unregulated and without the algae). Results show a significant disturbance of the composition and structure of macroinvertebrate community in sites affected by the stream flow regulation downstream of the dam compared with unregulated streams, but the alterations are more dramatic in the area where the growth of D. geminata is massive because of the total substrate occupation by the algal filaments. Scrapers and others invertebrates living on the coarse substrate are especially affected at such sites. Moreover, an important increase in the relative abundance of chironomids is associated with the algal massive growth, especially in case of Eukiefferiella devonica and Cricotopus spp., reducing the assemblage diversity and leading to the taxonomic and functional homogenization of the community. Changes in the reservoir management (such as releasing the water from surface rather than from the hypolimnion) may be useful to control the massive growth of D. geminata and thus reducing the effects of river regulation on macroinvertebrate assemblage composition. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Geomorphologists are becoming increasingly interested in assessing morphologic structure and the diversity and/or complexity in morphologic structure across multiple scales within river systems. Unfortunately, many of our existing tools/variables are unsuitable for this task because they do not work across multiple scales or with changing discharges. Asymmetry is one variable that can be used to either include or exclude variations in flow stage and that can be assessed across multiple scales. Existing asymmetry indices, however, are limited in scope and largely focus on only cross‐sectional form. This study examines three existing asymmetry indices in the cross‐stream and downstream planes (for cross‐sections and riffle or pools, respectively) and develops nine new asymmetry indices that incorporate vertical, cross‐stream and downstream asymmetry for bed elements (e.g. riffle crests, pool troughs, riffle entrance slope), bedforms (pools or riffles) and bar units (pool‐riffle sequences) to investigate the utility of asymmetry as a measure of morphologic structure and diversity in fluvial systems. These 12 indices are field tested on the Embarras River in East Central Illinois, USA. The results of this study indicate that there is considerable morphologic diversity in bed elements, bedforms and bar units both at bankfull and also with varying flow stage. This multi‐scale, multidimensional, multistage variability in morphologic structure highlights the complexity of natural river systems. The highly variable nature of fluvial form within a reach has important implications for river restoration and/or assessments of physical habitat or river health especially in instances where pools, riffles or pool‐riffle sequences are the focus of study. In general the most robust and useful combination of asymmetry indices for most applications includes A* and AL1 for bed elements and bedforms and AL3, AW and AH for bar units. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号