首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The impact of river incision in response to channelization on the conditions of overbank deposition is shown by the study of two montane rivers from the upper Vistula drainage basin, southern Poland. The Wisl/oka River had insufficient energy to destroy the river‐control structures and remained laterally stable in the course of the channel downcutting. Under such conditions, the incision has raised the relative elevation of the floodplain above the river bed, thereby reducing considerably the frequency of overbank flows, and increasing concentration of suspended sediment transport within the incised channel. On the high‐energy Skawa, the long periods of incision of the channelized river alternated with the shorter periods of lateral channel migration over the twentieth century. This has led to the formation of an incised meander belt, within which flood flows are constricted, and where the high velocities of the floodplain flows inhibit overbank deposition. Field observations confirm an insignificant role played nowadays by floodplain sedimentation in the valleys of both rivers. This study shows that the potential of the floodplains of the Carpathian tributaries to the Vistula for sediment storage has been dramatically reduced over the few past decades as a result of the channelization‐induced incision of the rivers. The frequency of overbank flows has decreased considerably on the rivers draining the eastern part of the Polish Carpathians, and the majority of the suspended sediment is routed within the resultant enlarged channels. In the western part of the mountains, high velocities of the floodplain flows restrict overbank deposition on the narrow floodplains developed along incised channels. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Historical trends in hydrology, geomorphology, and floodplain vegetation provide fundamental contexts for designing future management of large rivers, an area of fluvial research extensively informed by studies of historical channel dynamics. Changes in hydrology, channel structure, floodplain forests, and large wood were documented for the 273‐km main stem of the Willamette River from 1850 to present. Reduced sediment supply and frequency and magnitude of floods have decreased channel mobility and incised channels, leading to fewer gravel bars, islands, and side channels. Human alteration of channel morphology, vegetation, and bank hardening has exacerbated channel simplification caused by reductions in floods, sediment supply, and inputs of wood. A substantial number of floodplain channels reoccupied remnants of previous active channels inundated during recent floods, demonstrating functional but often forgotten role of historical geomorphic structure in modern floodplains and flood processes. In most reaches, area of floodplain forests in 1990 was only 10% to 25% of the area of forests in 1850. Abundance of wood in the wetted channel was generally greater in reaches with higher abundances of floodplain forests. Future trajectories will be influenced by legacies of the historical river but increasingly will reflect evolution of a new river shaped by human development, changing climate, and emerging hydrogeomorphic and vegetation processes. Understanding historical characteristics and anticipating future rates and patterns of ecosystem change provide fundamental contexts for restoring biophysical processes and structure in a large floodplain river.  相似文献   

3.
The goal of this study was to construct a large, data‐rich model to test hydrological responses to engineering modifications on over 3200 km of the Mississippi and Lower Missouri Rivers. We compiled model explanatory variables from a geospatial database quantifying construction of all bridges, wing dikes, bendway weirs, levees, artificial meander cutoffs, channel constriction and navigational dams over the past 100–150 years. Response variables were derived from 68 rated and un‐rated hydrologic stations in the study area, with responses analysed across a range of discharges from within‐channel flows up to moderate floods. Correlation analysis, multiple linear regression and stepwise regression analyses document strong and consistent responses to construction history, both in individual reach‐scale models and systemwide. Meander cutoffs are associated with degradation and acceleration of flow that has reduced stages across the full discharge range. Navigational dams on the Upper Mississippi River increased low‐flow stages and flood levels to a lesser extent, with little or no post‐dam change. One of the strongest signals was the hydrologic response to wing‐dike construction, which resulted in large back‐water increases in stage upstream of wing dikes and mixed effects downstream, including the overlapping effects of incision and velocity losses. Levees were associated with local flow concentration, overbank storage loss and floodplain conveyance loss depending on reach‐scale conditions. The results presented here (1) quantify incremental and cumulative hydrologic responses to a range of engineering activities and (2) provide an empirical tool for verifying and assessing hydraulic and other models of river‐system change. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The transport of water and sediment from rivers to adjacent floodplains helps generate complex floodplain, wetland, and riparian ecosystems. However, riverside levees restrict lateral connectivity of water and sediment during flood pulses, making the re‐introduction of floodplain hydrogeomorphic processes through intentional levee breaching and removal an emerging floodplain restoration practice. Repeated topographic observations from levee breach sites along the lower Cosumnes River (USA) indicated that breach architecture influences floodplain and channel hydrogeomorphic processes. Where narrow breaches (<75 m) open onto graded floodplains, archetypal crevasse splays developed along a single dominant flowpath, with floodplain erosion in near‐bank areas and lobate splay deposition in distal floodplain regions. Narrow breaches opening into excavated floodplain channels promoted both transverse advection and turbulent diffusion of sediment into the floodplain channel, facilitating near‐bank deposition and potential breach closure. Wide breaches (>250 m) enabled multiple modes of water and sediment transport onto graded floodplains. Advective sediment transport along multiple flow paths generated overlapping crevasse splays, while turbulent diffusion promoted the formation of lateral levees through large wood and sediment accumulation in near‐bank areas. Channel incision (>2 m) upstream from a wide levee breach suggests that large flow diversions through such breaches can generate water surface drawdown during flooding, resulting in localized flow acceleration and upstream channel incision. Understanding variable hydrogeomorphic responses to levee breach architecture will help restoration managers design breaches that maximize desired floodplain topographic change while also minimizing potential undesirable consequences such as levee breach closure or channel incision.  相似文献   

5.
Dams may impact the health of downstream riparian vegetation communities through flow modifications such as decreased flood frequency and duration. Without historical vegetation data, however, it is difficult to relate changes in vegetation composition to hydrology patterns downstream of dams. We studied bottomland hardwood forests downstream of Toledo Bend Dam on the Sabine River in Texas and Louisiana to determine their sensitivity to minor changes in river hydrology with a particular focus on floods. Current riparian vegetation was characterized within three topographic zones at three selected sites below the dam. Using 80 years of hydrologic records from two gauging stations downstream of the dam, we evaluated trends in flood frequency, flood duration, peak discharge and total flood discharge in those periods before (1926?1965) and after (1971?2005) dam construction, as well as related flood stage to floodplain elevations to link topography to flood frequency. Plant species diversity in this system is highly dependent on minor changes in elevation, and the proportion of wetland‐dependent species changes rapidly with only a few centimeters difference in elevation. Although 50% of trees, shrubs and herbs in the sloughs were wetland adapted, their numbers were only 21% in the levees (74–284 cm higher in elevation) and 14% in the mid‐floodplains. Since dam construction, total flood discharge and duration at the most upstream gauge on the Sabine River decreased by 49%. At both gauges, mean discharge was also altered with higher summer flows. Patterns of tree regeneration point to less recruitment by wetland‐dependent species in the years following dam construction. These results suggest that minor changes in flood magnitude might limit occurrence of wetland species to the lowest topographic zones and illustrate the need to analyse sensitivity of plants to minor changes in flood characteristics when historical data for the vegetation community are lacking. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In dry ecoregions, trees are restricted to river valley floodplains where river water supplements the limited local precipitation. Around the Northern Hemisphere, cottonwoods, riparian poplars, are often predominant trees in floodplain forests and these ecological specialists require floods that create and saturate sand and gravel bars, enabling seedling recruitment. By pairing the interpretation of aerial photographs at approximately decade intervals with dendrochronology, we explored the coordination between river floods, geomorphic disturbance and colonization of plains cottonwoods (Populus deltoides) over eight meanders along the Red Deer River in the semi‐arid prairie of western Canada. This river has a relatively natural flow regime and minimal human alteration through the World Heritage Site of Dinosaur Provincial Park. We found that the 50‐year flood of 1954 increased channel migration and produced extensive accretion with downstream expansion of meander lobes and some channel infilling, which was followed by prolific cottonwood colonization. Those processes accompanied the major flood, while bank erosion and cottonwood losses were more gradual and continuous over the past half‐century. Results indicated even greater floodplain and woodland development after an earlier 100‐year flood in 1915. Each flood produced an arcuate band of mature cottonwoods and there were five to seven progressively older woodland bands across the floodplain, with each cottonwood age grouping increasing by about a half‐century. The 700 m wide floodplain was progressively reworked by the river through pulses of channel movement and floodplain and woodland development over approximately 250 years and correspondingly, the oldest cottonwoods were about 250 years old.  相似文献   

7.
The dynamic nature of alluvial floodplain rivers is a function of flow and sediment regimes interacting with the physiographic features and vegetation cover of the landscape. During seasonal inundation, the flood pulse forms a ‘moving littoral’ that traverses the plain, increasing productivity and enhancing connectivity. The range of spatio-temporal connectivity between different biotopes, coupled with variable levels of natural disturbance, determine successional patterns and habitat heterogeneity that are responsible for maintaining the ecological integrity of floodplain river systems. Flow regulation by dams, often compounded by other modifications such as levee construction, normally results in reduced connectivity and altered successional trajectories in downstream reaches. Flood peaks are typically reduced by river regulation, which reduces the frequency and extent of floodplain inundation. A reduction in channel-forming flows reduces channel migration, an important phenomenon in maintaining high levels of habitat diversity across floodplains. The seasonal timing of floods may be shifted by flow regulation, with major ramifications for aquatic and terrestrial biota. Truncation of sediment transport may result in channel degradation for many kilometres downstream from a dam. Deepening of the channel lowers the water-table, which affects riparian vegetation dynamics and reduces the effective base level of tributaries, which results in rejuvenation and erosion. Ecological integrity in floodplain rivers is based in part on a diversity of water bodies with differing degrees of connectivity with the main river channel. Collectively, these water bodies occupy a wide range of successional stages, thereby forming a mosaic of habitat patches across the floodplain, This diversity is maintained by a balance between the trend toward terrestrialization and flow disturbances that renew connectivity and reset successional sequences. To counter the influence of river regulation, restoration efforts should focus on reestablishing dynamic connectivity between the channel and floodplain water bodies.  相似文献   

8.
Periodic flooding plays a key role in the ecology of floodplain rivers. Damming of such rivers can disturb flooding patterns and have a negative impact on commercial fish yield. The Volga River, the largest river in Europe, has a regulated flow regime after completion of a cascade of dams. Here, we study effects of damming on long‐term discharge variability and flood pulse characteristics. In addition, we evaluate the effects of the altered flood pulse on floodplain ecosystem functioning and commercial fish yields. Our results indicate that both flood pulse and fish populations of the Volga–Akhtuba floodplain have varied considerably over the past decades. After damming, annual maximum peak discharges have decreased, minimum discharges increased, but average discharges remained similar to pre‐damming conditions. Moreover, because of bed level incision of over 1.5 m, a higher discharge is needed to reach bankfull level and inundate the floodplains. Despite this significantly altered hydrological regime and subsequent morphological changes, current discharge management still provides significant spring flooding. However, commercial fish catches did decrease after damming, both in the main channel and in the floodplain lakes. All catches were dominated by species with a eurytopic flow preference, although catches from the main channel contained more rheophilic species, and floodplain catches contained more limnophilic and phytophilic species. The strong increase of opportunistic gibel carp (Carassius gibelio) around 1985 was apparent in the main channel and the floodplain lakes. Despite the hydrological changes, the decrease in overall catches, and the upsurge of gibel, we found a strong positive effect of flood magnitude in the previous year on commercial fish yield in the floodplain lakes. This suggests that under the current discharge management there still is an increased fish growth and/or survival during high floods and that functioning of the floodplain is at least partly intact. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Reports concerning the influence of dams on river hydrology vary among researchers, interest groups and government agencies. These often contradicting statements may occur because changes in hydrology caused by dams are distinct for each dam and river watershed. The objective of this research was to use site specific techniques to determine if the 1967 installation of the Carlyle Dam, lower Kaskaskia River, Illinois, altered flood frequency and duration within the forested floodplain located below the dam. Results indicated a decrease in flood duration and frequency, and a decrease in annual flood frequency variation at a site 6.4 km below the dam. Pre‐dam versus post‐dam differences in flood frequency and duration at the site 32.2 km below the dam were related to climate rather than dam effects. Although dam impacts are a concern, this research shows that distance downstream from the dam and downstream tributary and watershed characteristics should be considered before assuming that the dam has changed hydrologic parameters for portions of rivers. This research also indicates that areas of the lower Kaskaskia River may still maintain hydrologic ecological integrity, and could be targeted for restoration and adaptive management purposes. Hydrologic modelling combined with river gage and on‐site well measurement techniques presented in this study could provide detailed flood frequency and duration information for land use, sociological and geomorphological questions in focus areas within river floodplains. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Natural hydrogeomorphic characteristics and hydrologic alterations are important ecological drivers, and hydrology is also a common ecological, flood control and navigation system indicator. Hydrologic characteristics change dramatically from one end of the Upper Mississippi River System to the other, and hydraulic characteristics also differ spatially across the river channels and floodplain in response to dams, levees and diversions. Low flow surface water spatial change in response to navigation and flood control has been well known for many years, but little information was available on the spatial distribution of frequent floods. The flow frequency data presented here were developed to better estimate contemporary floods after historic flooding in 1993. Flood stage estimates are enhanced in GIS to help quantify and map potential floodplain inundation for more than 1000 river miles on the Upper Mississippi and Illinois Rivers. Potential flood inundation is mapped for the 50% to 0.2% annual exceedance probability flood stage (i.e. 2‐ to 500‐year expected recurrence interval flood) and also for alternative floodplain management scenarios within the existing flood protection infrastructure. Our analysis documents: (i) impoundment effects, (ii) a hydrologic gradient within the navigation pools that creates repeating patterns of riverine, backwater and impounded aquatic habitat conditions, (iii) potential floodplain inundation patterns for over 2 million acres and (iv) several integrated floodplain management scenarios. Extreme flood events are more common in recent decades, and they are expected to continue to occur at greater frequency in response to climate change. Floodplain managers can use the results presented here to help optimize land management and flood damage reduction on the Upper Mississippi River System. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

11.
Fish populations in the Brazos River, Texas, were surveyed monthly for 2 years to determine the relative influence of hydrology and habitat characteristics on the recruitment dynamics of seven species representing three divergent life history strategies. Surveys were conducted in two oxbow lakes with different flood recurrence intervals and the main river channel. The first year was relatively dry with few oxbow‐river connections, whereas year 2 was relatively wet and connections between the main channel and floodplain habitats were common. Oxbow lakes supported greater juvenile abundances of most species relative to the main channel and were particularly important for nest building species with parental care. The river channel supported small species with extended reproductive periods and large, long‐lived species that are able to store reproductive potential during sub‐optimal periods. Hydrologic isolation was associated with greater rotifer densities in oxbows, and species with the greatest fecundity produced strong year classes during this period. Hydrologic connectivity did not increase juvenile production for most species, suggesting that recruitment dynamics in the Brazos River are similar to predictions of the low flow recruitment hypothesis (LFR). These results suggest that both hydrology and habitat heterogeneity interact with fish life history strategy to determine optimal conditions for recruitment and all three factors must be considered in restoration strategies for floodplain rivers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Increasing multi‐sectoral demands on water resources have led to water abstraction and transfer activities, and the construction of dams and embankments that have significantly altered the flood regimes of rivers throughout the world resulting in the loss of fish production and biodiversity. The current emphasis on sustainable development and biodiversity conservation is leading efforts to mitigate these impacts by means of interventions such as the release of artificial floods downstream of dams and the manipulation of water levels within impounded floodplains. Whilst much work has been done to determine the hydrological requirements for the maintenance of salmonid populations, few equivalent studies are available from which to develop criteria for the management of hydrological regimes for fishes and fisheries in large floodplain–river systems such as the Mekong. The population dynamics of fish in such rivers are believed to respond to hydrological conditions in a density‐dependent manner. An age‐structured population dynamics model incorporating sub‐models describing density‐dependent growth, mortality and recruitment was used to explore how hydrological conditions within a theoretical floodplain–river system affect the dynamics of a common floodplain–river fish species. Graphical summaries of the response of exploitable biomass to a range of different drawdown rates, dry and flood season areas and volumes, and flood season durations are presented under five different model assumptions concerning density‐dependent processes. Optimal flooding patterns are also described for the model species and theoretical river system. The patterns of predictions that emerge from the simulations provide guidelines for managing or manipulating hydrological conditions in river systems for both fixed and variable volume hydrological scenarios. As a general rule of thumb, exploitable biomass is maximized by minimizing the rate of drawdown and maximizing the flood duration and flood and dry season areas or volumes. However, experiences from dam and other hydraulic engineering projects suggest that these predictions should be treated with caution until we better understand the influence of hydrology on spawning behaviour, system primary production, and critical habitat availability. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The upper Missouri River bottomland in north‐central Montana, USA, retains much of the physical character it had when traversed by Lewis and Clark around 1805. We used geospatial data to quantify long‐term changes in the distribution of bottomland vegetation, land use patterns and channel planform for a 257‐rkm segment of the Missouri River above Fort Peck Reservoir. This segment is less ecologically altered than downstream segments, but two dams completed in the mid‐1950s have decreased the frequency and magnitude of floods. The area of forest is sparse because of geomorphic setting but, contrary to public perception, has remained relatively constant during the past century. However, the stability of forest area obscures its spatial and temporal dynamics. We used state and transition models to quantify fates and sources of forest during two periods: 1890s–1950s and 1950s–2006. Total forest area was 6% greater in 2006 than it was in the 1890s, largely due to reduced forest loss to erosional processes and gains related to progressive channel narrowing. Channel narrowing resulted in part from human‐caused peak flow attenuation. A modified transition matrix, used to examine future steady‐state conditions, projected little change in forest area; however, these projections are likely an overestimate. The extent to which 2006 forest area represents a transient adjustment to a new flow regime versus a dynamic, quasi–steady state will be determined by the long‐term interplay among hydrologic factors, channel processes, water management and land use practices. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

14.
设计洪水是水利水电工程设计的重要参数, 对于无实测水文资料的设计断面设计洪水计算通常会移用其上下 游或邻近流域的水文站设计洪水成果。通过水文推理公式对设计洪峰流量与集水面积的变化关系进行推导分析, 再通过西南地区不同流域的众多实测设计洪水成果进行统计分析, 归纳总结了西南地区洪峰流量随集水面积的变 化关系及其变化规律。  相似文献   

15.
An understanding of the processes that determine plant community structure is a requisite for the planning and evaluation of restoration efforts on river floodplains. Variable disturbance regimes derived from flood pulses increase the susceptibility of river floodplains to colonizations by new species and establish invasibility as a potentially important factor in plant community assembly and dynamics. The role of invasibility in the restoration of a wet prairie community on the Kissimmee River floodplain in central Florida was evaluated by quantifying temporal species turnover rates during wet and dry season sampling over a 12‐year pre‐restoration and post‐restoration period. Turnover rates increased with reestablishment of annual inundation regimes and were significantly greater on the reflooded floodplain than on the drained, channelized floodplain. Recurrent periods of increased invasibility were associated with repeated high‐amplitude flood pulses and accompanied by increased diversity of plant communities within the wet prairie landscape. Neither invasibility nor beta diversity was strongly related to the variable hydroperiods or depths provided by local topography and restoration of seasonal hydrologic regimes. Results suggest that invasibility is a functional process by which the restored flood pulse has reestablished the structure and diversity of the wet prairie. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Floodplain lakes are important aquatic resources for supporting ecosystem services, such as organismal habitat, biodiversity, and the retention of nutrients and sediment. Due to geomorphic alteration of river channels and land-cover change, degradation to floodplain lakes in the Ohio River basin is occurring at a rate that will escalate as climate change causes increased flood intensity and the seasonal redistribution of rainfall. A better understanding of the local drivers that affect oxbow lakes is needed for targeted floodplain restoration efforts designed to slow degradation. We examined the effects of land cover, topography, and hydrologic connectivity on water quality and fish diversity and abundance in nine floodplain lakes with potentially high remnant ecological function in the Wabash-White watershed (Indiana, Ohio, and Illinois). Data collection included water-quality parameters; stable water isotopes; total phosphorus, total nitrogen, and chlorophyll-a; and fish community diversity and abundance. Results indicate that hay/pasture land cover and decreased topographic relief in the local oxbow watersheds, along with reduced river hydrologic connectivity, were related to an increase in total phosphorus, total nitrogen, and chlorophyll-a. Greater biodiversity and abundance in fish assemblages were evident in oxbow lakes that were more disconnected from the main channel. The results of this study suggest that hydrologic connectivity of oxbow lakes with the contributing drainage area and the main channel influence nutrients and fish communities. Knowing the influencing factors can help ecosystem managers better protect these valuable floodplain lake ecosystems and prioritize restoration efforts amidst increasing stressors due to climate and land-use changes.  相似文献   

17.
Flood regime and vegetation flood tolerance interact to influence tree growth in riverine landscapes. We studied tree growth in floodplain and upland forests of the Wisconsin River. About a century ago, levees set back from the river were constructed on this floodplain. The levee restricts some floodplain area from overbank flood events, but leaves a portion of active floodplain still inundated by floods. We addressed two questions: (1) how do growth rates of flood‐tolerant and flood‐intolerant tree species in the floodplain differ with flood regime? (2) At the stand level, how does growth rate differ with flood regime and between floodplain and upland areas? Annual tree growth rates from 1991 to 2000 were determined from tree increment cores for both individual species and stands. Tree growth rates of individual species varied between flood regimes. The most flood‐tolerant species (Betula nigra and Fraxinus pennsylvanica) grew faster in areas with active flooding, while the growth of less flood‐tolerant species (Quercus velutina and Q. ellipsoidalis) was depressed in swales and active floodplain. However, stand‐level tree growth did not differ between the floodplain and upland, or between flood regimes within the floodplain. Therefore, variation in the growth of individual species may not scale up to create differences in stand‐level tree growth because forest community composition varies spatially with flood regime. We suggest that growth rates are similar among sites because each community comprises of species adapted to their current flood regime. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Oxbow lakes, sloughs and other floodplain depressions associated with former channel positions are critical elements of floodplain hydrology, geomorphology and ecology. They comprise key elements of wetland and aquatic habitats and have important influence on the storage and routing of floodwaters. The hydrological connectivity between active river channels and floodplain depressions varies considerably in a qualitative sense, even within a single fluvial system. Several oxbows, sloughs and paleochannels were examined on the lower Sabine River, Texas/Louisiana, during a period of high but sub‐bankfull flow as well as at lower flows. Six different types of surface water connectivity with the main, active channel were identified: (i) flow through—a portion of the river flow regularly passes through the feature and returns to the main channel; (ii) flood channel—there is no hydraulic connection at normal flows, but at high flows the channels convey discharge, at least part of which returns to the main channel; (iii) fill and spill—the features fill to a threshold level at high flows and then overflow (mainly via ephemeral channels) into flood basins; (iv) fill and drain—the features fill at high river discharges but do not (except in large floods) overflow because as river discharge declines, water drains back to the river; (v) tributary occupied—tributaries draining to the abandoned channel continue to occupy it, flowing through it to the active channel; and (vi) disconnected—no flow is exchanged except during large floods. The age or stage of infilling and the relative elevation of abandoned channels are important first‐order controls of hydrological connectivity, but the lateral distance from the active channel is poorly related. Other critical controls are whether the cutoff section receives tributary input and whether a tie channel forms. The alluvial valley geomorphic context—specifically the presence of a meander belt ridge and flood basins—is also critical. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Many gravel bed rivers in the European Alpine area suffered different ranges and types of human pressure that modified their morphology and altered their processes. This work presents the case of the middle portion of the Brenta River, historically impacted by human activities such as floodplain occupations, bank protection, gravel mining, hydropower schemes and water diversion. Dam operation and gravel mining have produced considerable modifications in the natural sediment regime generating important morphological channel responses (narrowing and incision). Large areas of the former active channel have been colonized by riparian vegetation, both as islands and as marginal woodlands. Overall, the river changed its morphological pattern from braided to wandering. The present study analyses the timing and extent of the planform morphological changes that occurred over the last 30 years along the middle portion of the river (20 km long) through the examination of aerial photos, repeated topographic measurements and hydrological data. A series of recent aerial photos (1981, 1990, 1994, 1999, 2003, 2006, 2008, 2010 and 2011) have been used to assess the medium and short‐term morphological changes of the floodplains and the active channel area. As to the medium‐term modification, the recent changes in in‐channel gravel mining have determined a new trend of active channel widening through erosion of vegetated areas. The analysis has also allowed to assess the morphological effect of single flood events. Only floods with recurrence interval higher than 8–10 years appear to be able to determine substantial erosion of floodplain and island margins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
在大洪水期行洪滞洪沉沙是黄河下游宽滩区的主要功能之一。近十几年来,随着黄河水沙的变化和小浪底水库的建成运用,对宽滩区运用方式的争论更为激烈,却一直缺乏系统的对比研究。为此,黄科院利用小浪底至陶城铺河道实体模型,采用2013年汛前地形,开展了黄河下游宽滩区是否修建防护堤两种不同运用方式下,大洪水期的洪水演进试验,通过对比分析不同运用方式下的下游河道在冲淤演变、洪水位变化和滩区防洪安全等方面的问题,探讨了大洪水条件下黄河下游河道冲淤及滩区的安全形势,以期为黄河下游河道治理措施的决策提供科学的参考依据。结果表明,宽滩区修建防护堤后,中常高含沙洪水条件下主槽淤积量小于不修防护堤方案,大洪水条件下主槽冲刷量大于不修防护堤方案,说明主槽过流能力和输沙能力均有所增大。但是,修建防护堤后的嫩滩淤积量,两种洪水条件下均呈现出明显大于不修防护堤方案,河道的横断面形态和"二级悬河"形势均有所恶化。同时,由于目前地形条件下夹河滩以上河段主河槽过流能力达到了6 000m3/s,洪水向下游的演进速度和水量明显增加,导致高村以下的洪水位比不修防护堤时显著提升,增大了高村以下河段的防洪压力,滩区的防洪安全受到严重威胁。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号