首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Angiogenesis has a pivotal role in tumor growth and the metastatic process. Molecular imaging was shown to be useful for imaging of tumor-induced angiogenesis. A great variety of radiolabeled peptides have been developed to target αvβ3 integrin, a target structure involved in the tumor-induced angiogenic process. The presented study aimed to synthesize deferoxamine (DFO)-based c(RGD) peptide conjugate for radiolabeling with gallium-68 and perform its basic preclinical characterization including testing of its tumor-imaging potential. DFO-c(RGDyK) was labeled with gallium-68 with high radiochemical purity. In vitro characterization including stability, partition coefficient, protein binding determination, tumor cell uptake assays, and ex vivo biodistribution as well as PET/CT imaging was performed. [68Ga]Ga-DFO-c(RGDyK) showed hydrophilic properties, high stability in PBS and human serum, and specific uptake in U-87 MG and M21 tumor cell lines in vitro and in vivo. We have shown here that [68Ga]Ga-DFO-c(RGDyK) can be used for αvβ3 integrin targeting, allowing imaging of tumor-induced angiogenesis by positron emission tomography.  相似文献   

2.
We report a single-molecule radiotracer that can be labeled independently with 18F-fluoride or radiometals (64Cu, 177Lu) in a single step. A prostate-specific membrane antigen (PSMA)-targeting ligand, armed with both an organotrifluoroborate and a metal-chelator (DOTA), was designed to optionally afford 18F-, 64Cu- or 177Lu-labeled products that were injected into mice bearing prostate cancer (LNCaP) xenografts. PET/CT images and ex vivo biodistribution data show high, specific tumor uptake irrespective of which radionuclide is used, thereby demonstrating a new approach to combining, in a single molecule, 18F-labeling capabilities for PET imaging with radiometalation for potential imaging and therapeutic applications.  相似文献   

3.
64Cu is a cyclotron‐produced radionuclide which offers, thanks to its characteristic decay scheme, the possibility of combining positron emission tomography (PET) investigations with radiotherapy. We evaluated the Alceo system from Comecer SpA to automatically produce 64Cu for radiolabelling purposes. We established a 64Cu production routine with high yields and radionuclide purity in combination with excellent operator radiation protection. The carbonic anhydrase XII targeting 6A10 antibody Fab fragment was successfully radiolabelled with the produced 64Cu, and proof‐of‐principle small‐animal PET experiments on mice bearing glioma xenografts were performed. We obtained a high tumor‐to‐contralateral muscle ratio, which encourages further in vivo investigations of the radioconjugate regarding a possible application in diagnostic tumor imaging.  相似文献   

4.
Herein we report the synthesis, photophysical properties, positron emission tomography (PET) imaging and photodynamic therapy (PDT) efficacy of methyl 3-(1′-m-iodobenzyloxy)ethyl-3-devinyl-verdin 4 (with or without the 124I isotope). The PET imaging ability and ex vivo biodistribution of [124I] 4 were compared with the well-studied methyl [3-(1241′-m-iodobenzyloxy)ethyl]-3-devinyl-pyropheophorbide-a methyl ester (PET-ONCO or [124I] 2 ) and [18F]fluorodeoxyglucose ([18F]FDG) in BALB/c mice bearing colon-26 tumors. Whole-body PET images of [124I] 4 containing a fused methoxy cyclohexenone ring system showed excellent tumor contrast with time (72>48>24 h post-injection). Ex vivo biodistribution results indicate that relative to the current clinical standard [18F]FDG and [124I] 2 in 2 % ethanol formulation, [124I] 4 , at the same radioactive dose (25 μCi per mouse), showed higher tumor uptake at 24 h post-injection and longer tumor retention. In biological environments, compound 4 showed lower fluorescence and lower singlet oxygen yield than 2 , which is possibly due to higher aggregation caused by the presence of a fused cyclohexenone ring system, resulting in limited in vitro/in vivo PDT efficacy. Therefore, the chlorophyll-a analogue [124I] 4 provides easy access to a novel PET imaging agent (with no skin phototoxicity) to image cancer types—brain, renal carcinomas, pancreas—in which [18F]FDG shows limitations.  相似文献   

5.
Five new AuIII‐peptidodithiocarbamato complexes of the type [AuIIIBr2(dtc‐AA1‐AA2‐OR] (in which AA1=N‐methylglycine (Sar), l /d ‐Pro; AA2=l /d ‐Ala, α‐aminoisobutyric acid (Aib); R=OtBu, triethylene glycol methyl ether), differing with regard to the amino acid sequence and/or the chiral amino acid configuration, were designed to enhance tumor selectivity and bioavailability. The gold(III)‐based moiety was functionalized to exploit the targeting properties of the peptidomimetic ligand toward two peptide transporters (namely PEPT1 and PEPT2), which are upregulated in several tumor cells. The compounds were synthesized and fully characterized, mainly by means of elemental analysis, one‐ and two‐dimensional NMR spectroscopy, FT‐IR, and UV/Vis spectrophotometry. The crystal structures of three compounds were also solved by X‐ray diffraction. In vitro cytotoxicity studies using a panel of human tumor cell lines (A549 [non‐small‐cell lung carcinoma], MCF‐7 [breast cancer], A2780 [ovarian carcinoma], H1975 [non‐small‐cell lung carcinoma], H460 [large‐cell lung carcinoma], and A431 [human epidermoid carcinoma]) showed the dtc‐Pro‐Aib‐OtBu derivative to be very effective, with GI50 values much lower than those of cisplatin. This complex was thus selected for evaluating stability under physiological conditions and possible interactions with serum albumin, as well in PARP‐1 enzyme inhibition assays and preliminary ex vivo toxicity experiments on healthy rat tissues.  相似文献   

6.
For 64Cu radiolabeling of biomolecules to be used as in vivo positron emission tomography (PET) imaging agents, various chelators are commonly applied. It has not yet been determined which of the most potent chelators—NODA‐GA ((1,4,7‐triazacyclononane‐4,7‐diyl)diacetic acid‐1‐glutaric acid), CB‐TE2A (2,2′‐(1,4,8,11‐tetraazabicyclo[6.6.2]hexadecane‐4,11‐diyl)diacetic acid), or CB‐TE1A‐GA (1,4,8,11‐tetraazabicyclo[6.6.2]hexadecane‐4,11‐diyl‐8‐acetic acid‐1‐glutaric acid)—forms the most stable complexes resulting in PET images of highest quality. We determined the 64Cu complex stabilities for these three chelators by a combination of complex challenge and an in vivo approach. For this purpose, bioconjugates of the chelating agents with the gastrin‐releasing peptide receptor (GRPR)‐affine peptide PESIN and an integrin αvβ3‐affine c(RGDfC) tetramer were synthesized and radiolabeled with 64Cu in excellent yields and specific activities. The 64Cu‐labeled biomolecules were evaluated for their complex stabilities in vitro by conducting a challenge experiment with the respective other chelators as challengers. The in vivo stabilities of the complexes were also determined, showing the highest stability for the 64Cu–CB‐TE1A‐GA complex in both experimental setups. Therefore, CB‐TE1A‐GA is the most appropriate chelating agent for *Cu‐labeled radiotracers and in vivo imaging applications.  相似文献   

7.
The polyether ionophore salinomycin ( SAL ) has captured much interest because of its potent activity against cancer cells and cancer stem cells. Our previous studies have indicated that C1/C20 double-modification of SAL is a useful strategy to generate diverse agents with promising biological activity profiles. Thus, herein we describe the synthesis of a new class of SAL analogues that combine key modifications at the C1 and C20 positions. The activity of the obtained SAL derivatives was evaluated using primary acute lymphoblastic leukemia, human breast adenocarcinoma and normal mammary epithelial cells. One single- [N,N-dipropyl amide of salinomycin ( 5 a )] and two novel double-modified analogues [N,N-dipropyl amide of C20-oxosalinomycin ( 5 b ) and piperazine amide of C20-oxosalinomycin ( 13 b )] were found to be more potent toward the MDA-MB-231 cell line than SAL or its C20-oxo analogue 2 . When select analogues were tested against the NCI-60 human tumor cell line panel, 4 a [N,N-diethyl amide of salinomycin] showed particular activity toward the ovarian cancer cell line SK-OV-3. Additionally, both SAL and 2 were found to be potent ex vivo against human ER/PR+, Her2 invasive mammary carcinoma, with 2 showing minimal toxicity toward normal epithelial cells. The present findings highlight the therapeutic potential of SAL derivatives for select targeting of different cancer types.  相似文献   

8.
Cytochrome P450 (CYP) 1B1 has been found to be overexpressed specifically in tumor tissues at an early stage, which makes it a potential cancer biomarker for molecular imaging. Multimodal imaging combines different imaging modalities and offers more comprehensive information. Thus, imaging probes bearing more than one kind of signal fragment have been extensively explored and display great promise. Herein, we developed a near infrared (NIR) probe with a chelator moiety targeting CYP1B1 by conjugating α-naphthoflavone (ANF) derivatives with both an NIR dye and a chelator for potential application in bimodal imaging. Enzymatic inhibitory studies demonstrated inhibitory activity against CYP1B1 and selectivity among CYP1 were successfully retained after chemical modification. Cell-based saturation studies indicated nanomolar range binding affinity between the probe and CYP1B1 overexpressed cancer cells. In vitro competitive binding assays monitored by confocal microscopy revealed that the probe could specifically accumulate in tumor cells. In vivo and ex vivo imaging studies demonstrated that the probe could effectively light-up the tumor tissues as early as 2 hours post-injection. In addition, the fluorescence was significantly blocked by co-injection of CYP1B1 inhibitor, which indicated the probe accumulation in tumor sites was due to specific binding to CYP1B1.  相似文献   

9.
Fenretinide (4-HPR) is a synthetic derivative of all-trans-retinoic acid (ATRA) characterised by improved therapeutic properties and toxicological profile relative to ATRA. 4-HPR has been mostly investigated as an anti-cancer agent, but recent studies showed its promising therapeutic potential for preventing metabolic syndrome. Several biological targets are involved in 4-HPR's activity, leading to the potential use of this molecule for treating different pathologies. However, although 4-HPR displays quite well-understood multitarget promiscuity with regards to pharmacology, interpreting its precise physiological role remains challenging. In addition, despite promising results in vitro, the clinical efficacy of 4-HPR as a chemotherapeutic agent has not been satisfactory so far. Herein, we describe the preparation of a library of 4-HPR analogues, followed by the biological evaluation of their anti-cancer and anti-obesity/diabetic properties. The click-type analogue 3 b showed good capacity to reduce the amount of lipid accumulation in 3T3-L1 adipocytes during differentiation. Furthermore, it showed an IC50 of 0.53±0.8 μM in cell viability tests on breast cancer cell line MCF-7, together with a good selectivity (SI=121) over noncancerous HEK293 cells. Thus, 3 b was selected as a potential PET tracer to study retinoids in vivo, and the radiosynthesis of [18F] 3b was successfully developed. Unfortunately, the stability of [18F] 3b turned out to be insufficient to pursue imaging studies.  相似文献   

10.
How to find early gastric cancer cells in vivo is a great challenge for the diagnosis and therapy of gastric cancer. This study is aimed at investigating the feasibility of using fluorescent magnetic nanoparticle (FMNP)-labeled mesenchymal stem cells (MSCs) to realize targeted imaging and hyperthermia therapy of in vivo gastric cancer. The primary cultured mouse marrow MSCs were labeled with amino-modified FMNPs then intravenously injected into mouse model with subcutaneous gastric tumor, and then, the in vivo distribution of FMNP-labeled MSCs was observed by using fluorescence imaging system and magnetic resonance imaging system. After FMNP-labeled MSCs arrived in local tumor tissues, subcutaneous tumor tissues in nude mice were treated under external alternating magnetic field. The possible mechanism of MSCs targeting gastric cancer was investigated by using a micro-multiwell chemotaxis chamber assay. Results show that MSCs were labeled with FMNPs efficiently and kept stable fluorescent signal and magnetic properties within 14 days, FMNP-labeled MSCs could target and image in vivo gastric cancer cells after being intravenously injected for 14 days, FMNP-labeled MSCs could significantly inhibit the growth of in vivo gastric cancer because of hyperthermia effects, and CCL19/CCR7 and CXCL12/CXCR4 axis loops may play key roles in the targeting of MSCs to in vivo gastric cancer. In conclusion, FMNP-labeled MSCs could target in vivo gastric cancer cells and have great potential in applications such as imaging, diagnosis, and hyperthermia therapy of early gastric cancer in the near future.  相似文献   

11.
Frank P. Bell  Lori C. St. John 《Lipids》1993,28(12):1079-1085
Lifibrol, a new hypocholesterolemic agent with activity in humans, was examined in normal rats for its short-term and long-term effects on lipid homeostasis. Cholesterol (Chol) synthesis inhibition by lifibrol was demonstratedin vitro in liver minces from normal rats by following [1-14C]acetate ([14C]Ac) and DL-[2-14C]mevalonate ([14C]-MVA) incorporation into [14C]Chol. When administered at 50 mg/kg/d, lifibrol reduced plasma total Chol and triglycerides (TG) (P<0.001) within 24 h. The Chol reduction was largely a result of reduction of low density and very low density lipoprotein cholesterol (LDL+VLDL-chol) and a smaller decrease in high density lipoprotein cholesterol (HDL-chol). After 10 d, however, a rebound effect emerged, and after 41 d, plasma Chol, LDL+VLDL-chol, and HDL-chol were restored. In contrast, plasma TG remained at reduced levels (P<0.01). The rebound is attributed to counter-regulation of hepatic sterologenesis that was assessed bothex vivo andin vivo. Theex vivo incorporation of [14C]MVA and [14C]octanoate into [14C]Chol and total digitonin-precipitable [14C]sterols ([14C]DPS) in liver minces was increased 2-and 6-fold, respectively, in rats treated 6 d at 50 mg/kg. Similarly,in vivo incorporation of intraperitoneally injected [14C]Ac into hepatic [14C]DPS (2 h post-injection) was increased 2- to 5-fold at 50 mg/kg, and evidence for increased sterologenesis in nonhepatic tissue was also obtained. The increased hepatic sterologenesis, evident within 48 h, persisted out to 41 d of treatment by which time increases (P<0.002) in hepatic Chol and carcass total sterols were observed. Additionally, incorporation of injected [14C]Ac into hepatic [14C]TG was inhibited 60% by lifibrol (P<0.001), and the appearance of [14C]TG in plasma was reduced. Circulating free [14C]fatty acids ([14C]FFA) were also reduced, but hepatic [14C]FFA synthesis was unaffected, thus suggesting either a lesser release of newly formed FFA from liver or an enhanced removal from plasma.  相似文献   

12.
To develop a theranostic agent for diagnostic imaging and treatment of  hepatocellular carcinoma (HCC), poly(HPMA)‐APMA‐DTPA‐99mTc (HPMA: N‐(2‐hydroxypropyl methacrylamide; APMA: N‐(3‐aminopropyl)methacrylamide; DTPA: diethylenetriaminepentaacetic acid) and DTPA‐99mTc were synthesized and characterized, and their HCC targeting was tested by in vitro cellular uptake and in vivo tumor imaging in this study. Radioactivity of HCC cells incubated with poly(HPMA)‐APMA‐DTPA‐99mTc was significant higher (16.40%) than that of the cells incubated with DTPA‐99mTc (2.98%). Scintigraphic images of HCC in mice obtained at 8 h after injection of poly(HPMA)‐APMA‐DTPA‐99mTc showed increased radioactivity compared with that in mice injected with DTPA‐99mTc. The results of postmortem tissue radioactivity assay demonstrated higher radioactivity of HCC tumor tissues (2.69 ± 0.15% ID/g) from the tumor‐bearing mice injected with poly(HPMA)‐APMA‐DTPA‐99mTc compared with that of HCC tumor tissues in the tumor‐bearing mice injected with DTPA‐99mTc (0.83 ± 0.03 %ID/g), (P <0.001). These results first directly confirm the significant passive hepatocellular tumor targeting of HPMA copolymer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
Matrix metalloproteinase 2 (MMP-2) in metastatic cancer tissue, which is associated with a poor prognosis, is a potential target for tumor imaging in vivo. Here, we describe a metastatic cancer cell-targeted protein nanocage. An MMP-2-binding peptide, termed CTT peptide (CTTHWGFTLC), was conjugated to the surface of a naturally occurring heat shock protein nanocage by genetic modification. The engineered protein nanocages showed a binding affinity for MMP-2 and selective uptake in cancer cells that highly expressed MMP-2 in vitro. In near-infrared fluorescence imaging, the nanocages showed specific and significant accumulation in tumor tissue after intravenous injection in vivo. These protein nanocages conjugated with CTT peptide could be potentially applied to a noninvasive near-infrared fluorescence detection method for imaging gelatinase activity in metastatic tumors in vivo.  相似文献   

14.
[68Ga]Ga3+ can be introduced into receptor-specific peptidic carriers via different chelators to obtain radiotracers for Positron Emission Tomography imaging and the chosen chelating agent considerably influences the in vivo pharmacokinetics of the corresponding radiopeptides. A chelator that should be a valuable alternative to established chelating agents for 68Ga-radiolabeling of peptides would be a backbone-functionalized variant of the chelator CB-DO2A. Here, the bifunctional cross-bridged chelating agent CB-DO2A-GA was developed and compared to the established chelators DOTA, NODA-GA and DOTA-GA. For this purpose, CB-DO2A-GA(tBu)2 was introduced into the peptide Tyr3-octreotate (TATE) and in direct comparison to the corresponding DOTA-, NODA-GA-, and DOTA-GA-modified TATE analogs, CB-DO2A-GA-TATE required harsher reaction conditions for 68Ga-incorporation. Regarding the hydrophilicity profile of the resulting radiopeptides, a decrease in hydrophilicity from [68Ga]Ga-DOTA-GA-TATE (logD(7.4) of −4.11±0.11) to [68Ga]Ga-CB-DO2A-GA-TATE (−3.02±0.08) was observed. Assessing the stability against metabolic degradation and complex challenge, [68Ga]Ga-CB-DO2A-GA demonstrated a very high kinetic inertness, exceeding that of [68Ga]Ga-DOTA-GA. Therefore, CB-DO2A-GA is a valuable alternative to established chelating agents for 68Ga-radiolabeling of peptides, especially when the formation of a very stable, positively charged 68Ga-complex is pursued.  相似文献   

15.
Positron emission tomography (PET) is a non-invasive molecular imaging technology that is constantly expanding, with a high demand for specific antibody-derived imaging probes. The use of tracers based on temperature-sensitive molecules (i. e. Fab, svFab, nanobodies) is increasing and has led us to design a class of chelators based on the structure of 2-aminomethylpiperidine (AMP) with acetic and/or hydroxybenzyl pendant arms (2-AMPTA, NHB-2-AMPDA, and 2-AMPDA-HB), which were investigated as such for {Al18F}2+-core chelation efficiency. All the compounds were characterized by HPLC-MS analysis and NMR spectroscopy. The AlF-18 labeling reactions were performed under various conditions (pH/temperature), and the radiolabeled chelates were purified and characterized by radio-TLC and radio-HPLC. The stability of labeled chelates was investigated up to 240 min in human serum (HS), EDTA 5 mM, PBS and 0.9 % NaCl solutions. The in vivo stability of [Al18F(2-AMPDA-HB)] was assessed in healthy nude mice (n=6). Radiochemical yields between 55 % and 81 % were obtained at pH 5 and room temperature. High stability in HS was measured for [Al18F(2-AMPDA-HB)], with 90 % of F-18 complexed after 120 min. High stability in vivo, rapid hepatobiliary and renal excretion, with low accumulation of free F-18 in bones were measured. Thus, this new Al18F-chelator may have a great impact on immuno-PET radiopharmacy, by facilitating the development of new fluorine-18-labeled heat-sensitive biomolecules.  相似文献   

16.
Liposomes are highly biocompatible and versatile drug carriers with an increasing number of applications in the field of nuclear medicine and diagnostics. So far, only negatively charged liposomes with intercalated radiometals, e.g., 64Cu, 99mTc, have been reported. However, the process of cellular uptake of liposomes by endocytosis is rather slow. Cellular uptake can be accelerated by recently developed cationic liposomes, which exhibit extraordinarily high membrane fusion ability. The aim of the present study was the development of the formulation and the characterization of such cationic fusogenic liposomes with intercalated radioactive [131I]I for potential use in therapeutic applications. The epithelial human breast cancer cell line MDA-MB-231 was used as a model for invasive cancer cells and cellular uptake of [131I]I was monitored in vitro. Delivery efficiencies of cationic and neutral liposomes were compared with uptake of free iodide. The best cargo delivery efficiency (~10%) was achieved using cationic fusogenic liposomes due to their special delivery pathway of membrane fusion. Additionally, human blood cells were also incubated with cationic control liposomes and free [131I]I. In these cases, iodide delivery efficiencies remained below 3%.  相似文献   

17.
We describe here our efforts to develop a PET tracer for imaging GluN2A-containing NMDA receptors, based on a 5H-thiazolo[3,2-α]pyrimidin-5-one scaffold. The metabolic stability and overall properties could be optimized satisfactorily, although binding affinities remained a limiting factor for in vivo imaging. We nevertheless identified 7-(((2-fluoroethyl)(3-fluorophenyl)amino)-methyl)-3-(2-(hydroxymethyl)cyclopropyl)-2-methyl-5H-thiazolo-[3,2-α]pyrimidin-5-one ([18F] 7b ) as a radioligand providing good-quality images in autoradiographic studies, as well as a tritiated derivative, 2-(7-(((2-fluoroethyl)(4-fluorophenyl)amino)methyl)-2-methyl-5-oxo-5H-thiazolo[3,2-α]pyrimidin-3-yl)cyclopropane-1-carbonitrile ([3H2] 15b ), which was used for the successful development of a radioligand binding assay. These are valuable new tools for the study of GluN2A-containing NMDA receptors, and for the optimization of allosteric modulators binding to the pharmacophore located at the dimer interface of the GluN1-GluN2A ligand-binding domain.  相似文献   

18.
Electrochemically mediated atom transfer radical cyclization (eATRC) has been developed as an easy and clean method allowing the synthesis of halogenated cyclic compounds. This method has been successfully applied to the copper‐catalyzed atom transfer radical cyclization of some N‐allyl‐α,α‐dichloroamides in acetonitrile (CH3CN) using a copper complex with tris(2‐pyridylmethyl)amine (TPMA) with a metal loading of 1%. The catalyst is introduced as [Cu(II)TPMA]2+ and is activated and continuously regenerated to its active copper(I) form by reduction at a platinum (Pt) electrode. During the ATRC process a new copper(II) complex, namely, [ClCu(II)TPMA]+, whose reduction potential is ca. 0.350 V more negative than that of the starting [Cu(II)TPMA]2+, is formed. Therefore, the choice of the applied potential is critical and should be done taking care that all copper(II) species are reduced to copper(I). The compounds undergo very high conversions (79–100%) in a few hours of electrolysis, producing a cyclic γ‐lactam (yield 60–98%) as a mixture of two isomers, with a good cis‐diastereoselectivity [dr (cis/trans)=59/41–83/17]. [Cu(II)PMDETA]2+ (PMDETA=N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine), which is much cheaper, albeit less reactive than [Cu(II)TPMA]2+, was also investigated but the results were not satisfactory.

  相似文献   


19.
The side effects of chemotherapy can be overcome by linking toxic agents to tumor‐targeting peptides with cleavable linkers. Herein, this concept is demonstrated by addressing the human Y1 receptor (hY1R), overexpressed in breast tumors, with analogues of the hY1R‐preferring [F7,P34]NPY. First, carboxytetramethylrhodamine was connected to [F7,P34]NPY by an amide, ester, disulfide, or enzymatic linkage. Live imaging revealed hY1R‐mediated delivery and allowed visualization of time‐dependent intracellular release. Next, the fluorophore was replaced by the toxic agent methotrexate (MTX). In addition to linkage through the amide, ester, disulfide bond, or enzymatic cleavage site, a novel disulfide/ester linker was designed and coupled to [F7,P34]NPY by solid‐phase peptide synthesis. Internalization studies showed hY1R subtype selective uptake, and cell viability experiments demonstrated hY1R‐mediated toxicity that was clearly dependent on the linkage type. Fast release profiles for fluorophore‐[F7,P34]NPY analogues correlated with high toxicities of MTX conjugates carrying the same linker types and emphasize the relevance of new structures connecting the toxophore and the carrier.  相似文献   

20.
Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号