首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our group previously developed a series of bridged nucleic acids (BNAs), including locked nucleic acids (LNAs), amido-bridged nucleic acids (AmNAs), and guanidine-bridged nucleic acids (GuNAs), to impart specific characteristics to oligonucleotides such as high-affinity binding and enhanced enzymatic resistance. In this study, we designed a series of LNA-, AmNA-, and GuNA-modified splice-switching oligonucleotides (SSOs) with different lengths and content modifications. We measured the melting temperature (Tm) of each designed SSO to investigate its binding affinity for RNA strands. We also investigated whether the single-stranded SSOs formed secondary structures using UV melting analysis without complementary RNA. As a result, the AmNA-modified SSOs showed almost the same Tm values as the LNA-modified SSOs, with decreased secondary structure formation in the former. In contrast, the GuNA-modified SSOs showed slightly lower Tm values than the LNA-modified SSOs, with no inhibition of secondary structures. We also evaluated the exon skipping activities of the BNAs in vitro at both the mRNA and protein expression levels. We found that both AmNA-modified SSOs and GuNA-modified SSOs showed higher exon skipping activities than LNA-modified SSOs but each class must be appropriately designed in terms of length and modification content.  相似文献   

2.
The introduction of chemical modifications on the nucleic acid scaffold has allowed for the progress of antisense oligonucleotides (ASOs) in the clinic for the treatment of a variety of disorders. In contribution to the repertoire of gene-silencing nucleic acid modifications, herein we report the synthesis and incorporation of C5-propynyl arabinouridine ( araUP ) and arabinocytidine ( araCP ) into mixed-base ASOs containing a pyrimidine core. Substitution of the core with araU P and araCP resulted in stabilization of the duplex formed with RNA but not with DNA. Similar results were obtained with ASOs bearing phosphorothioate linkages or methoxyethyl (MOE) wings in a gapmer design. All modified ASOs were compatible with E. coli RNase H mediated degradation of target RNA. Substitution of DNA for araUP and araCP in the central portion of a gapmer with MOE wings demonstrated improved nuclease resistance. These results suggest C5-modified arabinonucleic acids may serve as a potential chemical modification for therapeutic ASOs.  相似文献   

3.
The synthesis of two new phosphoramidite building blocks for the incorporation of 5‐(pyren‐1‐yl)uracilyl unlocked nucleic acid (UNA) monomers into oligonucleotides has been developed. Monomers containing a pyrene‐modified nucleobase component were found to destabilize an i‐motif structure at pH 5.2, both under molecular crowding and noncrowding conditions. The presence of the pyrene‐modified UNA monomers in DNA strands led to decreases in the thermal stabilities of DNA*/DNA and DNA*/RNA duplexes, but these duplexes' thermal stabilities were better than those of duplexes containing unmodified UNA monomers. Pyrene‐modified UNA monomers incorporated in bulges were able to stabilize DNA*/DNA duplexes due to intercalation of the pyrene moiety into the duplexes. Steady‐state fluorescence emission studies of oligonucleotides containing pyrene‐modified UNA monomers revealed decreases in fluorescence intensities upon hybridization to DNA or RNA. Efficient quenching of fluorescence of pyrene‐modified UNA monomers was observed after formation of i‐motif structures at pH 5.2. The stabilizing/destabilizing effect of pyrene‐modified nucleic acids might be useful for designing antisense oligonucleotides and hybridization probes.  相似文献   

4.
The stability and structure of nylon nucleic acid duplexes with complementary DNA and RNA strands was examined. Thermal denaturing studies of a series of oligonucleotides that contained nylon nucleic acids (1-5 amide linkages) revealed that the amide linkage significantly enhanced the binding affinity of nylon nucleic acids towards both complementary DNA (up to 26 degrees C increase in the thermal transition temperature (T(m)) for five linkages) and RNA (around 15 degrees C increase in T(m) for five linkages) compared with nonamide linked precursor strands. For both DNA and RNA complements, increasing derivatization decreased the melting temperatures of uncoupled molecules relative to unmodified strands; by contrast, increasing lengths of coupled copolymer raised T(m) from less to slightly greater than T(m) of unmodified strands. Thermodynamic data extracted from melting curves and CD spectra of nylon nucleic acid duplexes were consistent with loss of stability due to incorporation of pendent groups on the 2'-position of ribose and recovery of stability upon linkage of the side chains.  相似文献   

5.
Since the recognition of oligonucleotides as a therapeutic modality, significant work has been devoted to improving therapeutic properties, including nuclease stability. Phosphorothioate (PS) modifications of phosphodiesters are one of the most explored chemical modification and integral to currently approved oligonucleotide therapeutics, including antisense oligonucleotides (ASOs) and short interfering RNAs (siRNAs). Insertion of sulfur into the phosphate bridge in an n-mer leads to 2n isomeric mixtures of PSs, with different nuclease stability and protein-binding properties. Efforts to create stereopure PS-containing oligonucleotides has spurred interest in identifying new synthetic methods. Herein, work on a novel and practical tricyclic PIII chiral auxiliary and its application in solid-supported synthesis of stereopure PS-containing oligonucleotides is reported.  相似文献   

6.
A novel type of oligonucleotide has been developed, characterized by the attachment of a lysyl moiety to a 2'-O-aminohexyl linker. A protected lysine building block was tethered to 2'-O-aminohexyluridine, and the product was converted into the corresponding phosphoramidite. Up to six modified nucleosides were incorporated in dodecamer DNA and RNA oligonucleotides using standard phosphoramidite chemistry. Each of the building blocks contributes one positive charge to the oligonucleotide instead of the negative charge of a wild-type nucleotide. Thermal denaturation profiles indicated a stabilizing effect of 2'-O-lysylaminohexyl chains that was more pronounced in RNA duplexes. Incubation of the oligonucleotides with 5'-exonuclease revealed an exceptionally high stability against enzymatic degradation. Incorporation of up to three modifications into functional antisense and siRNA oligonucleotides targeted at ICAM-1 showed that the gene-silencing activity was higher with an increasing number of lysylaminohexyl nucleotides. Compared with wild-type antisense or siRNA, compounds with three modifications led to equal or higher ICAM-1 downregulation.  相似文献   

7.

The increasing incidence of infectious diseases has prompted the application of Ultraviolet Germicidal Irradiation (UVGI) for the inactivation of viruses. This study evaluates UVGI effectiveness for airborne viruses in a laboratory test chamber by determining the effect of UV dosage, different nucleic acid type of virus (single-stranded RNA, ssRNA; single-stranded DNA, ssDNA; double-stranded RNA, dsRNA; and double-stranded DNA, dsDNA), and relative humidity on virus survival fraction after UVGI exposure.

For airborne viruses, the UVGI dose for 90% inactivation was 339–423 μW sec/cm2 for ssRNA, 444–494 μW sec/cm2 for ssDNA, 662–863 μW sec/cm2 for dsRNA, and 910–1196 μW sec/cm2 for dsDNA. For all four tested, the UVGI dose for 99% inactivation was 2 times higher than that for 90% inactivation. Airborne viruses with single-stranded nucleic acid (ssRNA and ssDNA) were more susceptible to UV inactivation than were those with double-stranded ones (dsRNA and dsDNA). For all tested viruses at the same inactivation, the UVGI dose at 85% RH was higher than that at 55% RH, possibly because water sorption onto a virus surface provides protection against UV-induced DNA or RNA damage at higher RH. In summary, UVGI was an effective method for inactivation of airborne virus.  相似文献   

8.
Hollenstein M 《Chimia》2011,65(10):770-775
Modified nucleoside triphosphates (dNTPs) are a versatile platform for the generation of high-density functionalized nucleic acids. The enzymatic polymerization of dNTPs allows the introduction of sensible functionalities that might not be compatible with the standard automated synthesis of oligonucleotides. Their application to in vitro selections, an elegant chemical approach to Darwinian evolution, delivers modified aptamers and catalytic nucleic acids with potentially enhanced properties. This review article highlights some recent synthetic examples of dNTPs bearing functionalities that are either found in the active site of protein enzymes or have been employed in organocatalysis and further underscores their usefulness in the development of some modified catalytic nucleic acids with special emphasis on M(2+)-independent RNA-cleaving DNAzymes.  相似文献   

9.
RNA represents a prominent class of biomolecules. Present in all living systems, RNA plays many essential roles in gene expression, regulation, and development. Accordingly, many biological processes depend on the accurate enzymatic processing, modification, and cleavage of RNA. Understanding the catalytic mechanisms of these enzymes therefore represents an important goal in defining living systems at the molecular level. In this context, RNA molecules bearing 3'- or 5'-S-phosphorothiolate linkages comprise what are arguably among the most incisive mechanistic probes available. They have been instrumental in showing that RNA splicing systems are metalloenzymes and in mapping the ligands that reside within RNA active sites. The resulting models have in turn verified the functional relevance of crystal structures. In other cases, phosphorothiolates have offered an experimental strategy to circumvent the classic problem of kinetic ambiguity; mechanistic enzymologists have used this tool to assign precise roles to catalytic groups as general acids or bases. These insights into macromolecular function are enabled by the synthesis of nucleic acids bearing phosphorothiolate linkages and the unique chemical properties they impart. In this Account, we review the synthesis, properties, and applications of oligonucleotides and oligodeoxynucleotides containing an RNA dinucleotide phosphorothiolate linkage. Phosphorothioate linkages are structurally very similar to phosphorothiolate linkages, as reflected in the single letter of difference in nomenclature. Phosphorothioate substitutions, in which sulfur replaces one or both nonbridging oxygens within a phosphodiester linkage, are now widely available and are used routinely in numerous biochemical and medicinal applications. Indeed, synthetic phosphorothioate linkages can be introduced readily via a sulfurization step programmed into automated solid-phase oligonucleotide synthesizers. In contrast, phosphorothiolate oligonucleotides, in which sulfur replaces a specific 3'- or 5'-bridging oxygen, have presented a more difficult synthetic challenge, requiring chemical alterations to the attached sugar moiety. Here we begin by outlining the synthetic strategies used to access these phosphorothiolate RNA analogues. The Arbuzov reaction and phosphoramidite chemistry are often brought to bear in creating either 3'- or 5'-S-phosphorothiolate dinucleotides. We then summarize the responses of the phosphorothiolate derivatives to chemical and enzymatic cleavage agents, as well as mechanistic insights their use has engendered. They demonstrate particular utility as probes of metal-ion-dependent phosphotransesterification, general acid-base-catalyzed phosphotransesterification, and rate-limiting chemistry. The 3'- and 5'-S-phosphorothiolates have proven invaluable in elucidating the mechanisms of enzymatic and nonenzymatic phosphoryl transfer reactions. Considering that RNA cleavage represents a fundamental step in the maturation, degradation, and regulation of this important macromolecule, the significant synthetic challenges that remain offer rich research opportunities.  相似文献   

10.
Parallel clamps can interact in a sequence-specific manner with homopyrimidine DNA and RNA oligonucleotides to form triplexes. For longer nucleic acids, we have previously demonstrated the inhibitory effect of DNA-target secondary structures on triplex formation. We further designed a modification of these molecules-that is, tail-clamps formed by addition of a tail sequence to the parallel clamp-and proved efficient binding of the molecules with structured single-stranded DNA targets. Here we explore the possible application of the tail-clamp strategy for triplex formation with RNA targets, which are typically found as strongly folded single-stranded molecules. Efficient and specific binding of a tail-clamp designed to form a parallel triplex with Listeria innocua iap mRNA sequences has been verified by UV melting curves and triplex affinity capture techniques. Furthermore, we show for the first time the formation of stable complexes of mRNA with tail-clamps not only under acidic but also under neutral and slightly basic pH conditions. These results signify a further step towards the possible applications of triplexes with mRNA molecules; research, analytical, and therapeutic uses can be envisaged. As an example, our tail-clamp-based triplex affinity capture assay allowed the specific capture and recovery of iap mRNA molecules from an L. innocua total RNA solution with 45 % yield.  相似文献   

11.
Peptide nucleic acid (PNA) forms a triple helix with double-stranded RNA (dsRNA) stabilized by a hydrogen-bonding zipper formed by PNA's backbone amides (N−H) interacting with RNA phosphate oxygens. This hydrogen-bonding pattern is enabled by the matching ∼5.7 Å spacing (typical for A-form dsRNA) between PNA's backbone amides and RNA phosphate oxygens. We hypothesized that extending the PNA's backbone by one −CH2− group might bring the distance between PNA amide groups closer to 7 Å, which is favourable for hydrogen bonding to the B-form dsDNA phosphate oxygens. Extension of the PNA backbone was expected to selectively stabilize PNA-DNA triplexes compared to PNA-RNA. To test this hypothesis, we synthesized triplex-forming PNAs that had the pseudopeptide backbones extended by an additional −CH2− group in three different positions. Isothermal titration calorimetry measurements of the binding affinity of these extended PNA analogues for the matched dsDNA and dsRNA showed that, contrary to our structural reasoning, extending the PNA backbone at any position had a strong negative effect on triplex stability. Our results suggest that PNAs might have an inherent preference for A-form-like conformations when binding double-stranded nucleic acids. It appears that the original six-atom-long PNA backbone is an almost perfect fit for binding to A-form nucleic acids.  相似文献   

12.
13.
Among various kinds of fluorine-substituted biomolecules, 2-fluoroadenine (2FA) and its derivatives have been actively investigated as therapeutic reagents, radio-sensitizers, and 19F NMR probes. In spite of their excellent properties, DNA containing 2FA has not been studied well. For fundamental understanding and future applications to the development of functional nucleic acids, we characterized 2FA-containing oligonucleotides for canonical right-handed DNA duplex, G-quadruplex, and i-motif structures. Properties of 2FA were similar to native adenine due to the small size of the fluorine atom, but it showed unique features caused by high electronegativity. This work provides useful information for future application of 2FA-modified DNA.  相似文献   

14.
Synthetic efforts towards nucleosides, nucleotides, oligonucleotides and nucleic acids covalently mercurated at one or more of their base moieties are summarized, followed by a discussion of the proposed, realized and abandoned applications of this unique class of compounds. Special emphasis is given to fields in which active research is ongoing, notably the use of HgII-mediated base pairing to improve the hybridization properties of oligonucleotide probes. Finally, this minireview attempts to anticipate potential future applications of organomercury nucleic acids.  相似文献   

15.
The ability of dendrimer 2G‐[Si{O(CH2)2N(Me)2+(CH2)2NMe3+(I?)2}]8 (NN16) to transfect a wide range of cell types, as well as the possible biomedical application in direct or indirect inhibition of HIV replication, was investigated. Cells implicated in HIV infection such as primary peripheral blood mononuclear cells (PBMC) and immortalized suspension cells (lymphocytes), primary macrophages and dendritic cells, and immortalized adherent cells (astrocytes and trophoblasts) were analyzed. Dendrimer toxicity was evaluated by mitochondrial activity, cell membrane rupture, release of lactate dehydrogenase, erythrocyte hemolysis, and the effect on global gene expression profiles using whole‐genome human microarrays. Cellular uptake of genetic material was determined using flow cytometry and confocal microscopy. Transfection efficiency and gene knockdown was investigated using dendrimer‐delivered antisense oligonucleotides and small interfering RNA (siRNA). Very little cytotoxicity was detected in a variety of cells relevant to HIV infection and erythrocytes after NN16 dendrimer treatment. Imaging of cellular uptake showed high transfection efficiency of genetic material in all cells tested. Interestingly, NN16 further enhanced the reduction of HIV protein 24 antigen release by antisense oligonucleotides due to improved transfection efficiency. Finally, the dendrimer complexed with siRNA exhibited therapeutic potential by specifically inhibiting cyclooxygenase‐2 gene expression in HIV‐infected nervous system cells. NN16 dendrimers demonstrated the ability to transfect genetic material into a vast array of cells relevant to HIV pathology, combining high efficacy with low toxicity. These results suggest that NN16 dendrimers have the potential to be used as a versatile non‐viral vector for gene therapy against HIV infection.  相似文献   

16.
Th formation of metal base pairs is a versatile method for the introduction of metal cations into nucleic acids that has been used in numerous applications including the construction of metal nanowires, development of energy, charge-transfer devices and expansion of the genetic alphabet. As an alternative, enzymatic construction of metal base pairs is an alluring strategy that grants access to longer sequences and offers the possibility of using such unnatural base pairs (UBPs) in SELEX experiments for the identification of functional nucleic acids. This method remains rather underexplored, and a better understanding of the key parameters in the design of efficient nucleotides is required. We have investigated the effect of methylation of the imidazole nucleoside ( dIm n Me TP ) on the efficiency of the enzymatic construction of metal base pairs. The presence of methyl substituents on dImTP facilitates the polymerase-driven formation of dIm4Me −AgI− dIm and dIm2MeTP −CrIII− dIm base pairs. Steric factors rather than the basicity of the imidazole nucleobase appear to govern the enzymatic formation of such metal base pairs. We also demonstrate the compatibility of other metal cations rarely considered in the construction of artificial metal bases by enzymatic DNA synthesis under both primer extension reaction and PCR conditions. These findings open up new directions for the design of nucleotide analogues for the development of metal base pairs.  相似文献   

17.
Peptide nucleic acids (PNAs), the synthetic DNA mimics that can bind to oligonucleotides to form duplexes, triplexes, and quadruplexes, could be advantageous as probes for nucleic acid sequences owing to their unique physicochemical and biochemical properties. We have found that a homopurine PNA strand could bind to two homopyrimidine DNA strands to form a PNA-DNA2 triplex. Moreover, the cyanine dye DiSC2(5) could bind with high affinity to this triplex and cause a noticeable color change. On the basis of this phenomenon, we have designed a label-free colorimetric sensing platform for miRNAs from cancer cells by using a PNA-DNA2 triple-helix molecular switch (THMS) and DiSC2(5). This sensing platform can detect miRNA-21 specifically with a detection limit of 0.18 nM, which is comparable to that of the THMS-mediated fluorescence sensing platform. Moreover, this colorimetric platform does not involve any chemical modification or enzymatic signal amplification, which boosts its applicability and availability at the point of care in resource-limited settings. The universality of this approach can be simply achieved by altering the sequences of the probe DNA for specific targets.  相似文献   

18.
With the goal of developing a quencher-free probe composed of an artificial nucleic acid, the fluorescent nucleobase analogue 5-(perylenylethynyl)uracil (PeU), which was incorporated into totally artificial serinol nucleic acid (SNA) as a substitute for thymine, has been synthesized. In the context of a 12-mer duplex with RNA, these fluorophores reduce duplex stability slightly compared with that of an SNA without PeU modification; thus suggesting that structural distortion is not induced by the modification. If two PeUs were incorporated at separate positions in an SNA, the fluorescent emission at λ≈490 nm was clearly enhanced upon hybridization with complementary RNA. A quencher-free SNA linear probe containing three PeUs, each separated by six nucleobases, has been designed. Detection of target RNA with high sensitivity and discrimination of a single-base mismatch has also been demonstrated.  相似文献   

19.
The formation of artificial metal base pairs is an alluring and versatile method for the functionalization of nucleic acids. Access to DNA functionalized with metal base pairs is granted mainly by solid-phase synthesis. An alternative, yet underexplored method, envisions the installation of metal base pairs through the polymerization of modified nucleoside triphosphates. Herein, we have explored the possibility of using thiolated and pKa-perturbed nucleotides for the enzymatic construction of artificial metal base pairs. The thiolated nucleotides S2C, S6G, and S4T as well as the fluorinated analogue 5FU are readily incorporated opposite a templating S4T nucleotide through the guidance of metal cations. Multiple incorporation of the modified nucleotides along with polymerase bypass of the unnatural base pairs are also possible under certain conditions. The thiolated nucleotides S4T, S4T, S2C, and S6G were also shown to be compatible with the synthesis of modified, high molecular weight single-stranded (ss)DNA products through TdT-mediated tailing reactions. Thus, sulfur-substitution and pKa perturbation represent alternative strategies for the design of modified nucleotides compatible with the enzymatic construction of metal base pairs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号