首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
We report the heterologous expression, structure, and antimicrobial activity of a lasso peptide, ubonodin, encoded in the genome of Burkholderia ubonensis. The topology of ubonodin is unprecedented amongst lasso peptides, with 18 of its 28 amino acids found in the mechanically bonded loop segment. Ubonodin inhibits RNA polymerase in vitro and has potent antimicrobial activity against several pathogenic members of the Burkholderia genus, most notably B. cepacia and B. multivorans, causative agents of lung infections in cystic fibrosis patients.  相似文献   

2.
The conventional notion that peptides are poor candidates for orally available drugs because of protease‐sensitive peptide bonds, intrinsic hydrophilicity, and ionic charges contrasts with the diversity of antibiotic natural products with peptide‐based frameworks that are synthesized and utilized by Nature. Several of these antibiotics, including penicillin and vancomycin, are employed to treat bacterial infections in humans and have been best‐selling therapeutics for decades. Others might provide new platforms for the design of novel therapeutics to combat emerging antibiotic‐resistant bacterial pathogens.  相似文献   

3.
Tiny marine animals represent an untapped reservoir for undiscovered, bioactive natural products. However, their small size and extreme chemical variability preclude traditional chemical approaches to discovering new bioactive compounds. Here, we use a metagenomic method to directly discover and rapidly access cyanobactin class natural products from these variable samples, and provide proof-of-concept for genome-based discovery and supply of marine natural products. We also address practical optimization of complex, multistep ribosomal peptide pathways in heterologous hosts, which is still very challenging. The resulting methods and concepts will be applicable to ribosomal peptide and other biosynthetic pathways.  相似文献   

4.
New drugs from silent gene clusters : Analysis of genome sequence data has identified numerous “cryptic” gene clusters encoding novel natural product biosynthetic assembly lines; this suggests that many new bioactive metabolites remain to be discovered, even in extensively investigated organisms. Several related and complementary strategies for identifying the products of these clusters have emerged recently and revitalized the search for novel bioactive natural products.

  相似文献   


5.
Retaining glycosidases are an important class of enzymes involved in glycan degradation. To study better the role of specific enzymes in deglycosylation processes, and thereby the importance of particular glycosylation patterns, a set of potent inhibitors, each specific to a particular glycosidase, would be an invaluable toolkit. Towards this goal, we detail here a more in‐depth study of a prototypical macrocyclic peptide inhibitor of the model retaining glycosidase human pancreatic α‐amylase (HPA). Notably, incorporation of l ‐DOPA into this peptide affords an inhibitor of HPA with potency that is tenfold higher (Ki=480 pm ) than that of the previously found consensus sequence. This represents a first successful step in converting a recently discovered natural‐product‐derived motif, already specific for the catalytic side‐chain arrangement conserved in the active sites of retaining glycosidases, into a tuneable retaining glycosidase inhibition warhead.  相似文献   

6.
The l -cystine β-lyase from Phaeobacter inhibens is involved in the biosynthesis of the sulfur-containing antibiotic tropodithietic acid. The recombinant enzyme was obtained by heterologous expression in Escherichia coli and biochemically characterised by unambiguous chemical identification of the products formed from the substrate l -cystine, investigation of the substrate spectrum, determination of the enzyme kinetics, sequence alignment with closely related homologues and site-directed mutagenesis to identify a highly conserved lysine residue that is critical for functionality. PatB from P. inhibens is a new member of the small group of characterised l -cystine β-lyases and the first example of an enzyme with such an activity that is required for the biosynthesis of an antibiotic. A comparison of PatB to previously reported enzymes with l -cystine β-lyase activity from bacteria and plants is given.  相似文献   

7.
8.
    
Lasso peptides are a structurally diverse superfamily of conformationally constrained peptide natural products, of which a subset exhibits broad antimicrobial activity. Although advances in bioinformatics have increased our knowledge of strains harboring the biosynthetic machinery for lasso peptide production, relating peptide sequence to bioactivity remains a continuous challenge. To this end, genome mining investigation of Actinobacteria-produced antimicrobial lasso peptides was performed to correlate predicted structure with antibiotic activity. Bioinformatic evaluation revealed eight putative novel class I lasso peptide sequences. Fermentation of one of these hits, Streptomyces NRRL F-5639, resulted in the production of a novel class I lasso peptide, arcumycin. Arcumycin exhibited antibiotic activity against Gram-positive bacteria including Bacillus subtilis (4 μg/mL), Staphylococcus aureus (8 μg/mL), and Micrococcus luteus (8 μg/mL). Arcumycin treatment of B. subtilis liaI-β-gal promoter fusion reporter strain resulted in upregulation of the liaRS system by the promoter liaI, indicating arcumycin interferes with lipid II biosynthesis. Cumulatively, the results illustrate the relationship between phylogenetically related lasso peptides and their bioactivity as validated through the isolation, structural determination, and evaluation of bioactivity of the novel class I antimicrobial lasso peptide arcumycin.  相似文献   

9.
Mechanism of action of tubulysin, an antimitotic peptide from myxobacteria   总被引:3,自引:0,他引:3  
Tubulysin A is a highly cytotoxic peptide with antimitotic activity that induces depletion of cell microtubules and triggers the apoptotic process. Treated cells accumulated in the G2/M phase. Tubulysin A inhibited tubulin polymerization more efficiently than vinblastine and induced depolymerization of isolated microtubule preparations. Microtubule depolymerization could not be prevented by preincubation with epothilone B and paclitaxel, neither in cell-free systems nor in cell lines. In competition experiments, tubulysin A strongly interfered with the binding of vinblastine to tubulin in a noncompetitive way; the apparent Ki was 3 microM. Electron microscopy investigations showed that tubulysin A induced the formation of rings, double rings, and pinwheel structures. The mode of action of tubulysin A resembled that of peptide antimitotics dolastatin 10, phomopsin A, and hemiasterlin. Efforts are underway to develop this new group of compounds as anticancer drugs.  相似文献   

10.
Eight new cyanopeptolins (insulapeptolides A-H) were obtained from the cyanobacterium Nostoc insulare. Their isolation was guided by their bioactivity toward the target enzyme human leukocyte elastase, molecular biological investigations, and MALDI-TOF analysis. These peptides are selective inhibitors of human leukocyte elastase with activities in the nanomolar range. Insulapeptolide D was the most potent compound with an IC(50) value of 85 nM (K(i) value of 36 nM).  相似文献   

11.
    
Kasumigamide is an antialgal hybrid peptide–polyketide isolated from the freshwater cyanobacterium Microcystis aeruginosa (NIES-87). The biosynthetic gene cluster was identified from not only the cyanobacterium but also Candidatus “Entotheonella”, associated with the Japanese marine sponge Discodermia calyx. Therefore, kasumigamide is considered to play a key role in microbial ecology, regardless of the terrestrial and marine habitats. We now report synthetic studies on this intriguing natural product that have led to a structural revision and the first total synthesis. During this study, a new analogue, deoxykasumigamide, was also isolated and structurally validated. This study confirmed the presence of the unusual pathway in the biosynthesis of a hybrid peptide–polyketide natural product.  相似文献   

12.
Genome mining is a powerful method for finding novel secondary metabolites. In our study on the biosynthetic gene cluster for the cyclic octapeptides surugamides A–E (inhibitors of cathepsin B), we found a putative gene cluster consisting of four successive non‐ribosomal peptide synthetase (NRPS) genes, surA, surB, surC, and surD. Prediction of amino acid sequence based on the NRPSs and gene inactivation revealed that surugamides A–E are produced by two NRPS genes, surA and surD, which were separated by two NRPS genes, surB and surC. The latter genes are responsible for the biosynthesis of an unrelated peptide, surugamide F. The pattern of intercalation observed in the sur genes is unprecedented. The structure of surugamide F, a linear decapeptide containing one 3‐amino‐2‐methylpropionic acid (AMPA) residue, was determined by spectroscopic methods and was confirmed by solid‐phase peptide synthesis.  相似文献   

13.
Alpha‐amanitin is an exceedingly toxic, naturally occurring, bicyclic octapeptide that inhibits RNA polymerase and results in cellular and organismal death. Here we report the straightforward synthesis of an amanitin analogue that exhibited near‐native toxicity. A pendant alkyne was readily installed to enable copper‐catalyzed alkyne–azide cycloaddition (CuAAC) to azido‐rhodamine and two azide‐bearing versions of the RGD peptide. The fluorescent toxin analogue entered cells and provoked morphological changes consistent with cell death. The latter two conjugates are as toxic as the parent alkyne precursor, which demonstrates that conjugation does not diminish toxicity. In addition, we showed that toxicity depends on a single diastereomer of the unnatural amino acid, dihydroxyisoleucine (DHIle), at position 3. The convenient synthesis of a heptapeptide precursor now provides access to bioactive amanitin analogues that may be readily conjugated to biomolecules of interest.  相似文献   

14.
Capuramycins are one of several known classes of natural products that contain an l ‐Lys‐derived l ‐α‐amino‐?‐caprolactam (l ‐ACL) unit. The α‐amino group of l ‐ACL in a capuramycin is linked to an unsaturated hexuronic acid component through an amide bond that was previously shown to originate by an ATP‐independent enzymatic route. With the aid of a combined in vivo and in vitro approach, a predicted tridomain nonribosomal peptide synthetase CapU is functionally characterized here as the ATP‐dependent amide‐bond‐forming catalyst responsible for the biosynthesis of the remaining amide bond present in l ‐ACL. The results are consistent with the adenylation domain of CapU as the essential catalytic component for l ‐Lys activation and thioesterification of the adjacent thiolation domain. However, in contrast to expectations, lactamization does not require any additional domains or proteins and is likely a nonenzymatic event. The results set the stage for examining whether a similar NRPS‐mediated mechanism is employed in the biosynthesis of other l ‐ACL‐containing natural products and, just as intriguingly, how spontaneous lactamization is avoided in the numerous NRPS‐derived peptides that contain an unmodified l ‐Lys residue.  相似文献   

15.
16.
A new cyclic hexapeptide, baceridin ( 1 ), was isolated from the culture medium of a plant‐associated Bacillus strain. The structure of 1 was elucidated by HR‐HPLC‐MS and 1D and 2D NMR experiments and confirmed by ESI MS/MS sequence analysis of the corresponding linear hexapeptide 2 . The absolute configurations of the amino acid residues were determined after derivatization by GC‐MS and Marfey's method. The cyclopeptide 1 consists partially of nonribosomal‐derived D ‐ and allo‐D ‐configured amino acids. The order of the D ‐ and L ‐leucine residues within the sequence cyclo(‐L ‐Trp‐D ‐Ala‐D ‐allo‐Ile‐L ‐Val‐D ‐Leu‐L ‐Leu‐) was assigned by total synthesis of the two possible stereoisomers. Baceridin ( 1 ) was tested for antimicrobial and cytotoxic activity and displayed moderate cytotoxicity (1–2 μg mL?1) as well as weak activity against Staphylococcus aureus. However, it was identified to be a proteasome inhibitor that inhibits cell cycle progression and induces apoptosis in tumor cells by a p53‐independent pathway.  相似文献   

17.
    
Ramoplanins and enduracidins are peptidoglycan lipid intermediate II-binding lipodepsipeptides with broad-spectrum activity against methicillin- and vancomycin-resistant Gram-positive pathogens. Targeted genome mining using probes from conserved sequences within the ramoplanin/enduracidin biosynthetic gene clusters (BGCs) was used to identify six microorganisms with BGCs predicted to produce unique lipodepsipeptide congeners of ramoplanin and enduracidin. Fermentation of Micromonospora chersina yielded a novel lipoglycodepsipeptide, called chersinamycin, which exhibited good antibiotic activity against Gram-positive bacteria (1–2 μg/mL) similar to the ramoplanins and enduracidins. The covalent structure of chersinamycin was determined by NMR spectroscopy and tandem mass spectrometry in conjunction with chemical degradation studies. These six new BGCs and isolation of a new antimicrobial peptide provide much-needed tools to investigate the fundamental aspects of lipodepsipeptide biosynthesis and to facilitate efforts to produce novel antibiotics capable of combating antibiotic-resistant infections.  相似文献   

18.
    
Lasso peptides belong to the natural product superfamily of ribosomally synthesized and post-translationally modified peptides (RiPPs). They are defined by an N-terminal macrolactam ring that is threaded by the C-terminal tail. In class II lasso peptides, this fold is maintained only through steric hindrance. Nonetheless, this fold can often withstand prolonged incubation at highly elevated temperatures. However, some lasso peptides will irreversibly unthread into their branched-cyclic counterparts upon heating. In recent years, an increasing number of research studies have focused on studying the factors that govern the thermal stability (or the lack thereof) of lasso peptides by using in vitro stability assays, mutational analysis, and molecular dynamics simulations. In this review, the current state of understanding the physicochemical parameters deciding the fate of a lasso peptide at elevated temperatures is discussed, and an overview is given of the techniques developed to streamline the separation and discrimination of lasso peptides from their branched-cyclic topoisomers.  相似文献   

19.
    
Lasso peptides are a subclass of ribosomally synthesized and post-translationally modified peptides (RiPPs) and feature the threaded, lariat knot-like topology. The basic post-translational modifications (PTMs) of lasso peptide contain two steps, including the leader peptide removal of the ribosome-derived linear precursor peptide by an ATP-dependent cysteine protease, and the macrolactam cyclization by an ATP-dependent macrolactam synthetase. Recently, advanced bioinformatic tools combined with genome mining have paved the way to uncover a rapidly growing number of lasso peptides as well as a series of PTMs other than the general class-defining processes. Despite abundant reviews focusing on lasso peptide discoveries, structures, properties, and physiological functionalities, few summaries concerned their unique PTMs. In this review, we summarized all the unique PTMs of lasso peptides uncovered to date, shedding light on the related investigations in the future.  相似文献   

20.
The natural product pepticinnamin E potently inhibits protein farnesyl transferases and has potential applications in treating cancer and malaria. Pepticinnamin E contains a rare N-terminal cinnamoyl moiety as well as several nonproteinogenic amino acids, including the unusual 2-chloro-3-hydroxy-4-methoxy-N-methyl-L-phenylalanine. The biosynthesis of pepticinnamin E has remained uncharacterized because its original producing strain is no longer available. Here we identified a gene cluster (pcm) for this natural product in a new producer, Actinobacteria bacterium OK006, by means of a targeted rediscovery strategy. We demonstrated that the pcm cluster is responsible for the biosynthesis of pepticinnamin E, a nonribosomal peptide/polyketide hybrid. We also characterized a key O-methyltransferase that modifies 3,4-dihydroxy-l -phenylalanine. Our work has identified the gene cluster for pepticinnamins for the first time and sets the stage for elucidating the unique chemistry required for biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号