首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Livestock grazing endophyte-infected tall fescue (Festuca arundinacea Schreb.) pastures often suffer from ergot poisoning. The endophyte,Neotyphodium coenophialum (Morgan-Jones and Gams) Glenn, Bacon, and Hanlin, comb. nov., also provides drought-tolerant, insect-resistant, and disease-resistant qualities to the plant. Therefore, producers are faced with a biological dilemma of risking loss of pasture by using endophyte-free tall fescue pasture or animal losses with endophyte-infected tall fescue pasture. One potential solution is to breed endophyte-infected tall fescue with lower levels of alkaloids. However, breeding could select for plants that are antagonistic to the endophyte, resulting in reduced plant vigor as a consequence of disruption of the mutualistic association between the organisms. The objectives of this study were to determine the relationship between plant mass and endophyte mycelial proteins versus ergot alkaloid concentration. To examine the endophyte effect on mycelial mass, tissue culture regenerants from tall fescue genotype PDN2 were infected with endophyte isolates EDN11, EDN12, and EDN2 to eliminate confounding effects of multiple plant genotypes. Crosses with PDN11 as the maternal parent and plant genotypes DN2, DN12, and DN15 as paternal parents were used to produce a population of different plant genotypes, all containing the same endophyte. Fungal mycelial protein was extracted from lyophilized tall fescue leaf sheath tissue and immunochemically quantified with monoclonal antibodies specific toN. coenophialum proteins. Ergot alkaloid concentration was also immunochemically measured. Quantities of mycelial protein and ergot alkaloids were calculated by regressing experimental values against standards of each. There was no correlation between herbage mass and alkaloid concentration or fungal protein quantity and alkaloid concentration when different fungal isolates were inserted into the same plant genotype. Coefficients of determination (r 2) were low (0.31 and 0.17) between leaf sheath and leaf blade alkaloid concentrations and endophyte protein when different plant genotypes contained the same endophyte isolate. Likewise,r 2 values were low between leaf sheath and leaf blade alkaloid concentrations and herbage mass. These data suggest that little or no antagonism occurred to the endophyte among plants low in alkaloid concentration.  相似文献   

2.
The pyrrolizidine alkaloid (PA) profiles were determined for adults of the polyphagous arctiid Estigmene acrea, which as larvae had fed on artificial diet supplemented with Crotalaria-pumila powder with known concentrations of PAs. The larvae always had a free choice between alkaloid-containing and plain diets. The alkaloid profiles of adults revealed a striking sexual dimorphism. Both sexes contained macrocyclic PAs of the monocrotaline type sequestered from the diet and, in addition, a substantial proportion of supinidine and retronecine esters synthesized by the insects from necine bases derived from the dietary alkaloids and necic acids of insect origin. These insect alkaloids accounted for 35% and 55% of total PAs in males and females, respectively. The difference was that in females the retronecine esters (creatonotines) made up 58 g (43% of total PAs), while males contained a fivefold lower proportion, 12 g (13%). Four of the ten male individuals analyzed were found devoid of creatonotines. Based on the experimental data in combination with evidence from the literature, it is suggested that the creatonotines are direct pheromone precursors in E. acrea. It is hypothesized that this may represent a general mechanism of hydroxydanaidal formation from diverse macrocyclic PAs in arctiids.  相似文献   

3.
The mutualistic symbiosis following infection of tall fescue, Festuca arundinacea, and perennial ryegrass, Lolium perenne, by fungal endophyte (Neotyphodium spp.) results in the production of alkaloids that are feeding deterrents or toxic to insects and livestock. If the levels of the alkaloids can be manipulated by cultural practices in the grasses that are used for home lawns and golf courses, this could alleviate the need for pesticide applications in urban environments. We evaluated the influence of mowing height on the levels of some alkaloids in a greenhouse experiment for two consecutive months. In tall fescue, levels of four of the nine alkaloids, including one presumptive alkaloid, showed increased levels with increasing the mowing height from 2.5 to 7.5 cm. The alkaloids were ergonovine, ergocryptine, perloline methyl ether, and an unidentified alkaloid designated as unknown C. In perennial ryegrass, three out of six alkaloids, perloline methyl ether, chanoclavine, and unknown A, showed similar increases. The alkaloid levels in perennial ryegrass showed more variability than those in tall fescue between the two sampling dates. It was clear in both grasses that the relative levels of the alkaloids varied with mowing height, as well as over time.  相似文献   

4.
Tall fescue (Festuca arundinacea) forms a symbiotic relationship with the clavicipitalean fungal endophyte Neotyphodium coenophialum. Endophyte-infected grass is tolerant to nematode, but the factors responsible are unknown. One objective of this work was to determine if root extracts of tall fescue effected chemoreceptor activity of Pratylenchus scribneri by using an in vitro chemoreception bioassay. Another objective was to determine if specific ergot alkaloids (ergovaline, ergotamine, a-ergocryptine, ergonovine), and loline alkaloids, all produced by the fungal endophyte, altered chemotaxis with this bioassay. Methanolic extract from roots altered chemotaxis activities in this nematode but only from roots of plants cultured 45 ≥ d, which repelled nematodes. Extracts prepared from noninfected grasses were attractants. This assay indicated that the alkaloids were either repellents or attractants. N-formylloline was an attractant at concentrations of 20 μg/ml and lower, while at higher concentrations it was a repellent. Ergovaline, the major ergot alkaloid produced by the endophyte, was repellent at both high and low concentrations and caused complete death of the nematodes.  相似文献   

5.
Foraging on a variety of different food items allows individuals to balance nutrient intake, but it also may dilute toxins present in single items of the diet. The distinction between nutrient balancing and toxin dilution becomes less clear, however, for organisms that sequester potentially toxic compounds for their own benefit. Additionally, specific dietary components chosen may or may not affect metabolic rate, growth, and other measures of fitness. Using the arctiid moth Utetheisa ornatrix, we (1) evaluated the temporal pattern of larval feeding behavior when presented with diet enriched with the pyrrolizidine alkaloid (PA), monocrotaline, (2) estimated the cost of ingesting PAs by measuring larval nutritional performance on diets containing different amounts of usaramine, and (3) investigated the magnitude of genetic effects on the performance of families raised on diets of different usaramine concentrations. We demonstrate that an herbivorous insect can temporally vary its intake of sequestered allelochemical. Individuals combined a preference for intermediate amounts of monocrotaline with temporal modulation of the specific amount of PA ingested on a given day. Using usaramine, we found little evidence for a cost of ingesting PAs, except among some family groups. Measures of digestive and metabolic efficiency showed no consistent reduction in performance on higher alkaloid diets. Only when larvae in family groups were fed a single concentration of PA over more than one instar was there any evidence for a cost of ingestion. Additionally, there were large genetic components to both growth and an individual's growth response to dietary alkaloid. These results suggest that while genetic variation in performance on alkaloid-rich diets exists, modulation of intake rate by caterpillars may be an important mechanism to reduce effects on the growth and fitness of individuals.  相似文献   

6.
Locoweeds (Astragalus and Oxytropis spp. that contain the toxic alkaloid swainsonine) cause widespread poisoning of livestock on western rangelands. There are 354 species of Astragalus and 22 species of Oxytropis in the US and Canada. Recently, a fungal endophyte, Embellisia spp., was isolated from Astragalus and Oxytropis spp. and shown to produce swainsonine. We conducted a survey of the major locoweeds from areas where locoweed poisoning has occurred to verify the presence of the endophyte and to relate endophyte infection with swainsonine concentrations. Species found to contain the fungal endophyte and produce substantial amounts of swainsonine were A. wootoni, A. pubentissimus, A. mollissimus, A. lentiginosus, and O. sericea. Astragalus species generally had higher concentrations of swainsonine than Oxytropis. Swainsonine was not detected in A. alpinus, A. cibarius, A. coltonii, A. filipes, or O. campestris. The endophyte could not be cultured from A. mollissimus var. thompsonii or A. amphioxys, but was detected by polymerase chain reaction, and only 30% of these samples contained trace levels of swainsonine. Further research is necessary to determine if the endophyte is able to colonize these and other species of Astragalus and Oxytropis and determine environmental influences on its growth and synthesis of swainsonine.  相似文献   

7.
The three alkaloid groups—lolines, ergopeptides, and peramine— are typically associated with endophyte infection of grasses, with the main function to protect hosts against herbivores. We determined levels of N-formylloline, N-acetylloline, ergovaline, and peramine in 18 European grasses naturally infected with seed-transmitted Neotyphodium endophytes or sexual Epichloë species. Peramine was the most common alkaloid, whereas lolines and ergovaline were only detected in Festuca hosts infected with E. festucae, N. coenophialum, or N. uncinatum. Only ten of the grass species analyzed contained detectable amounts of one or more of these alkaloids. There was a clear tendency for plants associated with stroma-forming Epichloë species to be free of alkaloids, and those that did produce alkaloids contained only small levels of peramine. In contrast, plants infected with seed-transmitted Neotyphodium endophytes often contained extremely high levels of lolines. Lolines enhance host survival through increased protection from herbivores and, thus, may be particularly favored in asexual endophytes that depend on host seed-production for their dispersal.  相似文献   

8.
Oreina cacaliae and O. speciosissima are leaf beetles that, as larvae and adults, sequester pyrrolizidine alkaloid N-oxides (PAs) as defensive compounds from their host plants Adenostyles alliariae and Senecio nemorensis. As in most Oreina species, O. speciosissima is also defended by autogenously produced cardenolides (mixed defensive strategy), whereas O. cacaliae does not synthesize cardenolides and is exclusively dependent on host-plant-acquired PAs (host-derived defense). Adults of the two Oreina species were found to have the same PA storage capacity. The larvae, however, differ; larvae of O. speciosissima possess a significantly lower capability to store PAs than O. cacaliae. The ability of Oreina larvae to sequester PAs was studied by using tracer techniques with 14C-labeled senecionine N-oxide. Larvae of the two species efficiently take up [14C]senecionine N-oxide from their food plants and store the alkaloid as N-oxide. In O. cacaliae, there is a slow but continuous loss of labeled senecionine N-oxide. This effect may reflect the equilibrium between continuous PA uptake and excretion, resulting in a time-dependent tracer dilution. No noticeable loss of labeled alkaloid is associated with molting. Senecionine N-oxide is detectable in all tissues. The hemolymph is, with ca. 50–60% of total PAs, the major storage compartment, followed by the integument, with ca 30%. The alkaloid concentration in the hemolymph is approximately sixfold higher than in the solid tissues. The selectivity of PA sequestration in larvae is comparable to PA sequestration in the bodies of adult beetles.  相似文献   

9.
Two genetically diverse strains of Trypanosoma cruzi were tested in vitro for susceptibility to the solanum-derived triglycoside alkaloids solasonine and solamargine. Cytolytic assays were performed on epimastigotes (EMs) and bloodstream form trypomastigotes (BSFs) lifecycle stages by using serial dilutions of each alkaloid. Each alkaloid effectively lysed both lifecycle stages, although solasonine routinely required higher concentrations to induce similar results. EMs demonstrated greater resistance to cytolysis than BSFs at equal concentrations of either alkaloid. No significant resistance could be correlated to parasite strain. The reported synergistic cytolytic effects observed upon compounding solasonine and solamargine together were also tested. We failed to identify any cytolytic synergism in cultures of EMs or BSFs. The role of rhamnose-binding proteins (RBPs) in mediating cytolysis was investigated through competitive inhibition experiments. The addition of exogenous l-rhamnose to the media failed to reduce parasite attrition independent of the parasite lifecycle stage. Based on these results, we suggest the mechanisms involved in cytolysis of T. cruzi by solasonine and solamargine are largely independent of rhamnose receptor-specific interactions. We propose that attrition likely involves less-specific carbohydrate interactions, which lead to the formation and intercalation of sterol complexes into the parasite plasma membrane.  相似文献   

10.
Tall larkspur (Delphinium spp.) is a serious toxic plant problem on western U.S. ranges. The major toxins in tall larkspur are methyllycaconitine (MLA) and 14-deacetylnudicauline (14-DAN); the sum of both is termed the toxic alkaloid concentration. Toxic alkaloids comprise about 20–50% of the total alkaloid concentration in tall larkspur. Toxic and total alkaloid concentration generally declines with maturity, whereas cattle and sheep consumption of larkspur typically increases with plant maturity. We hypothesized that cattle and sheep consumption of tall larkspur was negatively related to higher concentrations of total or toxic alkaloid. We compared consumption of several collections of dried, ground larkspur and fresh larkspur in a series of trials. In another trial, a crude alkaloid fraction was extracted with ethanol, added to alfalfa hay, and consumption compared to untreated alfalfa hay, alcohol-treated hay, and the essentially alkaloid-free plant residue. In all cases we correlated amounts eaten with total and toxic alkaloid concentration. A grazing trial was also conducted to relate larkspur consumption over time to alkaloid concentrations. Total alkaloid concentrations in dried, whole-plant collections ranged from 9.3 to 38.8 mg/g of dry weight, whereas toxic alkaloid concentrations varied from 0.0 to 7.1 mg/g. In one pen trial, cattle preferred a larkspur collection (P<0.01) that contained no toxic alkaloids but had a high total alkaloid concentration (39 mg/g). There was no correlation (P>0.05), however, between concentrations of total or toxic alkaloids and amount of dry plant consumed in this or any other trial. Conversely, sheep consumption tended to be negatively influenced by total and toxic alkaloid concentration (P0.08). In the trials with extract, cattle preferred the alcohol-treated hay and rejected the alkaloid-free residue (P<0.01), whereas the alkaloid-treated hay was of intermediate acceptability. Cattle preferred the alkaloid-treated hay over the alkaloid-free residue, indicating that alkaloids did not deter consumption. Conversely, the alkaloid-treated hay was less preferred than either untreated or alcohol-treated hay, suggesting a negative effect on acceptability. There was no correlation between alkaloid concentration and amount of treated feed eaten. In field trials, the amount of composited, fresh leaves or flowers eaten by cattle was influenced by plant part (P=0.04), but was not related (P>0.05) to alkaloid concentration. Cattle preferred leaves over flowers when offered individual plants differing in phenological stage and/or amount of shade, but alkaloid concentration was not related to consumption. We conclude that knowledge of the concentration of total or toxic alkaloid in tall larkspur will give little or no indication of plant acceptability to cattle. Even though accurate predictions can be made about the potential toxicity of larkspur based on the concentration of toxic alkaloids, predictions about consumption must be based primarily on plant phenology.  相似文献   

11.
Pyrrolizidine alkaloids occur in several plant families, attracting ithomiine and danaine butterflies that specialize on the flowers. I show that pyrrolizidine alkaloids in artificial nectar also inhibit at least one butterfly,Agraulis vanillae (Nymphalidae: Heliconiinae), a more general forager. Inhibition was demonstrated in two ways: quantity of nectar consumed and number of artificial flowers visited. The amount of sucrose solution consumed by individual butterflies was measured using a microcapillary tube. Number of flower visits was determined using an array of artificial orange and yellow flowers.A. vanillae drank less sucrose solution with monocrotaline, a pyrrolizidine alkaloid, than without. When monocrotaline was placed into yellow flowers,A. vanillae learned to visit predominantly orange flowers. Evolutionarily, pyrrolizidine alkaloids in nectar may represent an adaptation to exclude butterflies. Ithomiines and danaines, seeking these compounds in larval food plants, were not excluded. Alternatively, ithomiines and danaines overcame the nectar defense. In either case, the plant effectively increased floral constancy by inhibiting generalist butterflies and attracting specialists.  相似文献   

12.
Parasitoids developing within tobacco hornworms or fall army-worms exhibit significant differences in development and survival depending on whether their hosts fed on nicotine-free or nicotine-containing diets. The effects of nicotine were more severe on the relatively less adapted parasitoid,H. annulipes than the specialist parasitoid,Cotesia congregata. Labeled alkaloid originally placed in herbivore diet was incorporated in several parasitoid tissues. These results suggest that interactions between plant allelochemicals and parasitoids should be considered in the development of theory on insect herbivory and plant defense.Scientific article No. A4408, Contrib. No. 7397 of the Maryland Agricultural Experiment Station, Department of Entomology. Research supported by USDA. Competitive Grant No. 59-2241-1-1-749-0 and NSF grant BSR-84-00614.Mention of a commercial product does not constitute an endorsement.  相似文献   

13.
We performed field tests of alkaloid induction inNicotiana attenuata plants growing in southwestern Utah with mimicry of the two major types of damage inflicted by invertebrate and vertebrate herbivores: leaf damage and stalk removal, respectively. In undamaged plants, seasonal increases in leaf nicotine content occurred at a rate of 0.046% leaf dry mass/day. Leaf damage doubled the accumulation rate to 0.086–0.138% leaf dry mass/day, while stalk removal resulted in a quadrupling of the accumulation rate to 0.206% leaf dry mass/day. These damage-induced increases in nicotine accumulation are significantly larger than between-plant and phenological variations. Leaf damage to the nornicotine-(N. repanda andN. trigonophylla) and anabasine-accumulating (N. glauca)Nicotiana species native to North America resulted in 1.5- to 5-fold increases in their principal leaf alkaloid pools. We conclude that alkaloid induction is not limited to nicotine-accumulatingNicotiana species and that herbivores feeding on previously damaged plants are likely to encounter tissues with alkaloid titers significantly higher than those of undamaged plants.  相似文献   

14.
The effect of heartwood extracts from Acacia mangium (heartrot-susceptible) and A. auriculiformis (heartrot-resistant) was examined on the growth of wood rotting fungi with in vitro assays. A. auriculiformis heartwood extracts had higher antifungal activity than A. mangium. The compounds 3,4,7,8-tetrahydroxyflavanone and teracacidin (the most abundant flavonoids in both species) showed antifungal activity. A. auriculiformis contained higher levels of these flavonoids (3.5- and 43-fold higher, respectively) than A. mangium. This suggests that higher levels of these compounds may contribute to heartrot resistance. Furthermore, both flavonoids had strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and laccase inhibition. This suggests that the antifungal mechanism of these compounds may involve inhibition of fungal growth by quenching of free radicals produced by the extracellular fungal enzyme laccase.  相似文献   

15.
Tall fescue, Festuca arundinacea, and perennial ryegrass, Lolium perenne, are widely infected with fungal endophytes (Neotyphodium spp.). The symbiosis between plant and fungus leads to synthesis of alkaloids that have been shown to be either toxic or act as feeding deterrents against insect pests. As cultural practices have the potential to regulate production of plant secondary metabolites, we evaluated the influence of mowing frequency on the levels of major alkaloids in tall fescue and perennial ryegrass in the greenhouse. Tall fescue and perennial ryegrass maintained in 15-cm-diam. pots were cut to 5-cm height weekly or biweekly. Samples were taken monthly and the alkaloids extracted and analyzed by reverse-phase LC-MS. In tall fescue, ergovaline, ergonovine, and ergocristine were identified, whereas only ergocristine was identified in perennial ryegrass samples. In tall fescue, we observed a trend showing higher levels in samples cut biweekly than in those cut weekly. A similar pattern was seen in some putative alkaloids that were not identified. In perennial ryegrass, ergocristine and two putative alkaloids followed a pattern similar to that of alkaloids in tall fescue. A survey of a few samples of perennial ryegrass using extractions specific to peramine and lolitrem B yielded evidence suggesting their presence as well as several other identified alkaloids. These data support the hypothesis that decreased mowing frequency enhances alkaloid production/accumulation in tall fescue and perennial ryegrass.  相似文献   

16.
Analysis of honeydew excreted by various sap-sucking insects indicated the presence of certain plant secondary constituents in the phloem of their host plants. Honeydew excreted by mealybugs (Pseudococcus longispinus), living onCastanospermum australe, contained the indolizidine alkaloid castanospermine, a potent -glucosidase inhibitor. Similarly, honeydew from green peach aphids (Myzus persicae), feeding onSenecio vulgaris flower buds, contained the pyrrolizidine alkaloid senecionine, itsN-oxide, and hydrolytic products including retronecine. Cardenolides were detected in the honeydew of oleander aphids (Aphis nerii) feeding on oleander (Nerium oleander), indicating that these compounds are translocated in the phloem. On the other hand, honeydew from greenbugs (Schizaphis graminum), feeding on barley, lacked gramine or related indole metabolites. Similarly MBOA, the breakdown product of DIMBOA, was not detected in the honeydew of greenbugs living on DIMBOA-containing wheat.  相似文献   

17.
Sequestration of dietary pyrrolizidine alkaloids (PA) by larvae and adults of six European arctiid moth species (Spilosoma lubricipeda, Arctia caja, Phragmatobia fuliginosa, Callimorpha dominula, Diacrisia sannio, andTyria jacobaeae) was investigated for comparison with the well-studied Asian arctiidCreatonotos transiens. Larvae of all species metabolized free PA bases into the respectiveN-oxides. Only adults ofA. caja, P. fuliginosa, andS. lubricipeda, but not their larvae, converted dietary 7(S)-heliotrine to 7(R)-heliotrine, a direct precursor of a male pheromone in some arctiids, 7(R)-hydroxydanaidal. The larval integument figures as the main storage site for resorbed alkaloids; only minor amounts were found in other tissues. In addition, a significant amount of alkaloid is deposited in the cocoon ofArctia caja; only traces of alkaloids could be found in the meconium and the exuviae of this species. A substantial part of the alkaloids fed was degraded to unknown, nonalkaloidal products.  相似文献   

18.
Conium maculatum, a Eurasian weed naturalized in North America, contains high concentrations of piperidine alkaloids that act as chemical defenses against herbivores. C. maculatum was largely free from herbivory in the United States, until approximately 30 yr ago, when it was reassociated via accidental introduction with a monophagous European herbivore, the oecophorid caterpillar Agonopterix alstroemeriana. At present, A. alstroemeriana is found in a continuum of reassociation time and intensities with C. maculatum across the continent; in the Pacific Northwest, A. alstroemeriana can cause severe damage, resulting in some cases in complete defoliation. Studies in biological control and invasion biology have yet to determine whether plants reassociated with a significant herbivore from the area of indigeneity increase their chemical defense investment in areas of introduction. In this study, we compared three locations in the United States (New York, Washington, and Illinois) where C. maculatum experiences different levels of herbivory by A. alstroemeriana to determine the association between the intensity of the interaction, as measured by damage, and chemical defense production. Total alkaloid production in C. maculatum was positively correlated with A. alstroemeriana herbivory levels: plants from New York and Washington, with higher herbivory levels, invested two and four times more N to alkaloid synthesis than did plants from Illinois. Individual plants with lower concentrations of alkaloids from a single location in Illinois experienced more damage by A. alstroemeriana, indicative of a preference on the part of the insect for plants with less chemical defense. These results suggest that A. alstroemeriana may act either as a selective agent or inducing agent for C. maculatum and increase its toxicity in its introduced range.  相似文献   

19.
We investigated the growth-reducing effects of pyrrolizidine alkaloids (PAs) from Senecio jacobaea on nine plant-associated fungi (five strains of Fusarium oxysporum, two of F. sambucinum, and two of Trichoderma sp). Fungal growth was monitored on water agar media containing different concentrations of monocrotaline, retrorsine, or a purified extract of PAs from S. jacobaea. The growth rate of six strains was inhibited by PAs at the highest test concentration (3.33 mM), with the magnitude of the inhibition (7–35%) being dependent upon the specific fungus-PA interaction. In general, the PA extract caused the largest inhibition. However, the fungi isolated from S. jacobaea were positively affected by the PA extract (7–9%). Retrorsine N oxide was as effective as retrorsine in its inhibition of mycelium growth.  相似文献   

20.
Tall larkspur (Delphinium barbeyi) is the principal mountain larkspur responsible for the majority of cattle deaths on mountain rangelands in western Colorado and central and southern Utah in the United States. Ten plants in each of two tall larkspur populations in the mountains near Ferron and Salina, Utah, were marked, and single stalks were harvested periodically through the growing season for 4 yr. Toxic alkaloid concentration [alkaloids containing the N-(methylsuccimimido)-anthranilik ester group] was determined by Fourier transform infrared (FTIR) spectroscopy. Individual larkspur plants varied in alkaloid concentrations, especially in early growth (14–38 mg/g). As the concentration declined over the growing season, variation among plants also declined. There were yearly differences in alkaloid concentration among individual plants (P < 0.01) and populations (P < 0.001), even after accounting for differences in phenological growth between years. Variables such as precipitation, temperature, days since snow melt, growing degree days (sum of mean temperature each day from snow melt), and plant height and weight were all considered in a Mallows Cp multiple regression selection procedure to predict alkaloid concentration. The mixed model procedure in SAS adjusted the regression equation for locations and years. Growing degree days was the best single predictor of alkaloid levels: ln y = (3.581 – 0.00423 GDD), R 2 = 0.85. Internal validation of this equation within individual years and locations from which the equation was developed, produced correlations between observed versus predicted values ranging from r = 0.73 to 0.93. External validations on nine other larkspur populations produced correlations ranging from r = 0.76 to 0.99. This predictive equation can provide a tool for ranchers and land managers to make management decisions of when to graze cattle in larkspur areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号