首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In Part 1 of this work, the possibility of improving single-screw extruders (SSE) better dispersive mixer was explored by harnessing extensional flows provided by the hyperbolic contracting–diverging channels of extensional mixing elements (EME). Addition of the EME to the pin screw generated enhanced breakup for polymer blends and nanocomposite systems without significant penalty in flow rate. In Part 2, experiments are performed on immiscible polymer blends (low-viscosity ratio and high-viscosity ratio) and nanocomposites on both SSE and twin-screw extruder (TSE) with the same rotation speed and throughput. Morphological results show tremendous improvement in dispersive mixing capability of SSE when equipped with EME that are mainly comparable to conventional TSE that is, with kneading blocks as mixing sections, although not as good as TSEs equipped with EMEs. Mechanical results also show enhanced modulus when EME is used in SSE operations.  相似文献   

2.
Extensional mixing elements (EMEs) were previously developed for twin-screw extruders (TSEs) to incorporate extensional flows through stationary single-plane or double-plane hyperbolic convergence–divergence channels. In Part 1 of this work, the EME concept is extended to single-screw extruders (SSEs), which are known for their good pumping characteristics but limited dispersive mixing capability, to enhance the latter. Flow simulations are performed to optimize the EME design for SSE. Experimental validations are performed on immiscible polymer blends (varying viscosity ratio) and nanocomposites. Morphological results show tremendous improvement in mixing capability of SSE when equipped with EME without significant throughput and pressure drop penalties. Rheological and crystallinity studies are observed to be in line with the morphological analysis. Morphological and mechanical results are benchmarked with TSE operations in Part 2 of this work.  相似文献   

3.
An in‐house developed co‐rotating batch mixer was used to prepare the blends of natural rubber (NR) and ethylene‐propylene‐diene terpolymer (EPDM) in the present work. Phase morphology and magnitude of dispersive mixing efficiency offered by the in‐house developed co‐rotating batch mixer and a conventional counter‐rotating batch mixer were compared. It has been found that the co‐rotating batch mixer equipped with the MX2 rotor configuration could improve the dispersive mixing efficiency of NR/EPDM blends considerably. A poor state‐of‐mix in blends, particularly at high fill factor, could be overcome by the utilization of MX2 rotor configuration where the extensional flow is probably facilitated in the converging zones. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
The flow and mixing behavior of two miscible liquids has been studied in an innovative static mixer by using CFD,with Reynolds numbers ranging from 20 to 160. The performance of the new mixer is compared with those of Kenics, SMX, and Komax static mixers. The pressure drop ratio(Z-factor), coefficient of variation(CoV), and extensional efficiency(α) features have been used to evaluate power consumption, distributive mixing, and dispersive mixing performances, respectively, in all mixers. The model is firstly validated based on experimental data measured for the pressure drop ratio and the coefficient of variation. CFD results are consistent with measured data and those obtained by available correlations in the literature. The new mixer shows a superior mixing performance compared to the other mixers.  相似文献   

5.
A new laboratory‐scale mixing device called the “Vane Mixer” was designed, built, and tested. The vane mixer consists of three vane plasticizing and conveying unit. In comparison with the existing laboratory mixers, material flow in this vane mixer is characterized by a high contribution from extensional flow. As the mixer has mixing chamber of very simple geometry, the cleaning is very easy and the material lost is very small. The influences of mixing time and rotor speed on dispersed phase size were characterized and discussed. Morphology data on model immiscible polystyrene/high density polyethylene (PS/HDPE) blend have proved the high distributive and dispersive mixing efficiency. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41551.  相似文献   

6.
设计了1种能够增强聚合物混合效果的拉伸流动静态混合器(EFM),以高密度聚乙烯/聚苯乙烯(PE⁃HD/PS)作为混合体系,根据共混体系扫描电子显微镜(SEM)照片及分散相的平均粒径,研究了不同盘形结构和不同盘棱间隙(δ)(0.125~2.0 mm)下EFM的混合性能。结果表明,EFM的盘形入口结构对其混合性能影响较小,混合能力随盘棱顶端圆角半径的增大而有所提升,随δ的增大出现先降低再升高又降低的变化趋势。  相似文献   

7.
A contraction-expansion helical mixer which combines several features, viz. helical pipes for induction of secondary flows and sudden expansion and contraction array tor expansion vortices, has been designed to en- hance flow mixing. A fast competitive-consecutive diazo coupling reaction is used to test the mixing efficiency of contraction-expansion helical mixer. Furthermore, an image processing technique is applied for data visualization and monitoring the extent of mixing. The mixing performance is found to be superior in comparison to the regular helical mixer in the range of Reynolds number from 170 to 1540. Moreover, the mixing time of contraction-expansion helical mixer was found to be reduced by more than 25% compared to the regular helical pipe. Finally, a simple correlation is proposed for predicting the mixing time.  相似文献   

8.
This paper deals with the modelling of a Sulzer-Koch motionless mixer. A flow model involving convection and diffusion has been solved to characterize the dispersive mixing in one node of the network and this result was then complemented by a network analysis to obtain the flow distribution. Experimental data are in general agreement with the theory. The approach of this study is shown to provide valuable conclusions about the design of the mixer and to complement the more commonly used integral or statistical treatments. In particular, it has been shown that the ratio of internal resistances controls the distributive mixing in one mixer unit and that significant convective mass transport takes place within the node even when there is no net cross-flow.  相似文献   

9.
The mixing performance of the KMX and SMX static mixers have been compared using 3D high-resolution computational fluid dynamics (CFD) simulations. Although these mixers have a similar design composed of layers of blades, their blade shape is different: curved for the KMX and flat for the SMX. The flow of a Newtonian fluid in steady laminar regime has been considered as the benchmark of the study. The simulation was first validated by assessing the pressure drop vs. the number of mixer elements and the results were found to be in good agreement with experimental data. To evaluate the mixing quality, cross-section stream function, extensional efficiency, mean shear rate, residence time, intensity of segregation, stretching, and Lyapunov exponent have been selected. Analysis of the flow pattern and mixing parameters shows differences between the mixers and it appears that the curved blade is more efficient than the flat blade design at the expense of a slightly higher pressure drop. In practice, the KMX mixer should provide a higher mixing rate at high viscosity ratio than the SMX mixer. © 2004 American Institute of Chemical Engineers AIChE J, 51: 44–58, 2005  相似文献   

10.
Polypropylene (PP)‐based nanocomposites containing 4 wt% maleic anhydride grafted PP (PP‐g‐MA) and 2 wt% Cloisite 20A (C20A) were prepared using various processing devices, viz., twin‐screw extruder (TSE), single‐screw extruder (SSE), and SSE with an extensional flow mixer (EFM). Two processing methods were employed: (I) masterbatch (MB) preparation in a TSE (with 10 wt% C20A and clay/compatibilizer ratio of 1:2), followed by dilution in TSE, SSE, or SSE + EFM, to 2 wt% clay loading; (II) single pass, i.e., directly compounding of dry‐blended PP‐g‐MA/clay in TSE, SSE, or SSE + EFM. It has been indicated that the quality of clay dispersion, both at micro‐ and nanolevel, of the nanocomposites depends very much on the operating conditions during processing, such as mixing intensity and residence time, thus affecting the mechanical performance. Besides that the degradation of the organoclay and the matrix is also very sensitive to these parameters. According to results of X‐ray diffraction, field emission gun scanning electron microscopy, transmission electron microscopy, and mechanical tests, the samples prepared with MB had better overall clay dispersion, which resulted in better mechanical properties. The processing equipment used for diluting MB had a marginal influence on clay dispersion and nanocomposite performance. POLYM. ENG. SCI., 47:1447–1458, 2007. © 2007 Society of Plastics Engineers  相似文献   

11.
The melt flows of linear low-density polyethylene (LLDPE) and branched low-density polyethylene (LDPE) have been compared in a fully intermeshing co-rotating twin-screw extruder. The polyethylene melts were selected in order to investigate the effects of the melt rheology on the mixing. Their shear vicosity curves are quite similar, but the LDPE has a markedly higher apparent extensional viscosity over a wide range of stretch rates. The stagger of the paddles in the mixing zone of the extruder creates axial pressure-driven axial flow can have significant extensional strain components. Residence time distributions obtained in the melt zones of the extruder with tracer dye reveal that the LDPE has a narrower residence time distribution than the LLDPE over a wide range of operating conditions. The axial dispersion for the LDPE is significantly lower than the axial dispersion for the LLDPE. This is attributed to the greater extensional viscosity of the LDPE. During the reactive extrusion process, solid maleic anhydride and polyethylene were added at the feed port but the peroxide provides better control of the crosslinking reaction. Residence time distributions measured for the chemically more reactive LLDPE melt indicate reduced levels of axial mixing with reaction. The reduction in mixing is due to a crosslinking reaction that occurs in parallel to the grafting reaction. This change in mixing is smaller than the difference in mixing between LDPE and LLDPE.  相似文献   

12.
Hot-melt extrusion of a bio-sourced polyamide has been implemented in a single-screw extruder with supercritical carbon dioxide injection. CO2 acts as a plasticiser in the extruder barrel and as a physical blowing agent at the die. To insure a better mixing and dissolution of the CO2 into the polymer melt, addition of a static mixer between the screw tip and the die was tested. The effect of both the static mixing element and the CO2 injection on the melt flow behaviour has been elucidated. A recent technique of in-line Raman spectroscopy was implemented to make a residence time distribution study, using titanium dioxide as a tracer. The use of a static mixer exerts a major modification on the flow behaviour: it improves mixing by enhancing dispersion. In addition, the structure of the manufactured products was studied: the static mixer led to more homogeneous porous structure. The broad range of CO2 incorporation (up to 25%, w/w) into the melt led to the manufacture of foams with adjustable porosity from 15 to 70%.  相似文献   

13.
In plastic industry, a large variety of polymeric materials are obtained by liquid–liquid mixing. Recently, a new type of mixer (later called RMX)—based on a convergent/divergent unit which favors elongational flow—was developed with improved efficiency in polymer blending compared to traditional shear flow‐based devices such as internal mixers or extruders. The present study aims at identifying the possible origins of the higher dispersive and distributive mixing capability of this device. An experimental study, including flow visualization, and numerical simulations of creeping flows induced by this original device was carried out for Newtonian, shear‐thinning and viscoelastic fluids. The predictedmixing capability is based on length stretch and Lyapunov exponent methods. Calculation results show a good agreement with experiments and highlight some fundamental mixing mechanisms, such as striation, for viscoelatic fluids. POLYM. ENG. SCI., 54:2046–2056, 2014. © 2013 Society of Plastics Engineers  相似文献   

14.
在提出一种新型混沌型转子结构的基础上,运用Polyflow软件对其混炼过程进行三维非牛顿等温模拟,并借助于粒子示踪法对物料所经历的流场特性进行统计学分析;分析了转子结构和工艺参数对转子混合性能的影响,同时通过共混改性实验,对转子的混合效果进行了评估和表征。结果表明,高混沌型转子的分布混合能力有较大的提高,同时保持着良好的分散混合能力;混沌型转子制备的复合材料力学性能优于经典转子;转子转速的提高可以增强混沌转子的分散及分布混合能力,适当的加料速率是保证取得较好混合效果的关键因素。  相似文献   

15.
Positron emission particle tracking (PEPT) is a flow visualisation technique that has found application in a wide range of processes. In this work, PEPT has been used to study laminar flow of a high viscosity Newtonian and non-Newtonian fluid in a Kenics static mixer (KM). Through analysis of the trajectories of many hundreds of passes of the tracer particle through the mixer, it is possible to compute the overall flow field and to visualise how the fluid twists and folds as it passes along the mixer. Eulerian velocity maps plotted for the Newtonian and non-Newtonian fluids showed that the length required for the flow to develop is shorter for the non-Newtonian fluid than the Newtonian. The stretching and folding mechanism of mixing was observed by grouping the trajectories into clusters according to whether the trajectory passes to the left or right of the blade at the transition between elements. Those trajectories making the same L–R–L decision tended to remain in the same striation through two or three elements until that striation became stretched and folded back on itself, sandwiching other layers. It is clear that the PEPT data is rich and powerful. We are hopeful that the techniques we develop for the flow and mixing in the Kenics mixer will be applicable to studying more complex laminar flows.  相似文献   

16.
The axial discharge continuous mixer combines the features of a continuous mixer and a twin screw extruder, expanding the flexibility of this compounding machine. In this work we analyzed the influence of rotor design on the dispersive mixing performance of a LCMAX 40 unit. Specifically we looked at various arrangements for the pushing and counter pushing units in the design of the LCMAX 40. A fluid dynamics analysis package—FIDAP, based on the finite element method, was used to model the flow behavior of a power law model fluid under different pressurization conditions. Dispersive mixing efficiency was quantified in terms of shear stresses and elongational flow components generated in the flow field. We found that the counter-pushing unit generally contributes more in building up high shear stresses. However, the generation of elongational flow components, which is beneficial for dispersive mixing, is not solely dependent upon the pushing–counter pushing configuration but rather on the overall rotor geometry. We found that the maximum number of counter-pushing units in the rotor design of the LCMAX 40 should not exceed two in order to provide adequate material pumping. Rotor designs with alternating arrangements of pushing and counter-pushing units provide overall better dispersive mixing conditions.  相似文献   

17.
双转子连续混炼机是一种具有优异分散与分布混合特性的连续混炼设备。本文运用混沌流动理论,对双转子连续混炼机混炼流场的混沌流动特性进行了分析研究,提出了采用以物料停留时间为基准的修正Lyapunov指数来描述混合过程中发生的拉伸应变,并借助于有限元计算,得出流场绝大部分区域的修正Lyapunov指数大于零,并发现混炼流场中存在非常有利于拉伸、折叠流动的涡旋流动,赋予了双转子连续混炼机优异的分散与分布混合特性。  相似文献   

18.
Single and two-phase flows pressure drops through a Kenics static mixer were investigated, for liquid and gas Reynolds numbers ranging from 8110 < ReL < 18 940 to 1730 < ReG < 8680, respectively. New friction factor correlations were established for single and two-phase flows, showing better agreement than those available in the literature. Dissipated energy and characteristic time constants were estimated from experimental data. For instance, a dissipated energy with a maximum value of 510 W/kg was calculated in two-phase flow with the drift-flux model. The dispersed phase reduced the characteristic mixing times and its influence was more important than the continuous phase for all the characteristic mixing time investigated. Furthermore, the macroscopic characteristic mixing time was shown to be the governing mixing process for almost all gas and liquid flow rates explored.  相似文献   

19.
Polypropylene and ethylene‐propylene‐diene terpolymer (PP/EPDM) blends were melt compounded in a new mixing device, designed in our laboratory under the trademark of RMX®, which predominantly generates elongational flows. Dispersion of the EPDM minor phase in PP was carried out in both RMX® and in an internal mixer (Haake Rheomix 600) at equivalent specific mixing energies and the resultant morphologies obtained by SEM were analyzed and compared. A better dispersive mixing efficiency of the RMX® mixer, i.e., lower Dn and Dv of the dispersed EPDM phase was observed. The impact of elongational flow was more pronounced for blends having a high viscosity ratio p, indicating an enhanced droplet break‐up mechanism, which was attributed to the combination of high shear rates inside the mixing element and important elongational flows in the convergent/divergent zones. The morphology of the blends was correlated with their linear viscoelastic properties by using the Palierne model. Very good agreement was found for the PP/EPDM 80/20 blends but for higher EPDM content, the Palierne model failed to describe the rheological behavior, which was attributed to percolation of the minor phase with increasing the concentration. Higher elasticity at low frequencies was observed for blends processed in the RMX®, which was attributed to a higher generated interfacial area. POLYM. ENG. SCI., 54:1444–1457, 2014. © 2013 Society of Plastics Engineers  相似文献   

20.
静态混合器中液液分散的实验及CFD模拟   总被引:5,自引:1,他引:4       下载免费PDF全文
在SK型静态混合器上进行甲苯-水两相混合实验,采用截面直接拍摄法获得分散混合性能指标Sauter平均直径(SMD)。利用Box-Behnken响应面分析设计实验,在Design Expert 7.0平台上拟合实验数据,获得SMD的多项式形式的表达式。建立了与实验相同的静态混合器物理模型,使用Mixture多相流模型、k-ε湍流模型进行了CFD模拟研究,获得了浓度场云图及分布混合指标不均匀系数。模拟所得压降与实验值的相对误差在15%以内,表明模拟结果与实验结果吻合较好。结果表明,静态混合器中液液分散过程是分散混合和分布混合共同作用的结果,两种混合经过6~8个混合单元后共同达到充分发展。充分发展后的SMD受表观流速、分散相分率和静态混合器直径三因素影响,且表观流速的影响最为显著;充分发展后的不均匀系数均达0.05以下,表明静态混合器自身具有较好的分布混合性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号