首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fused filament fabrication (FFF) has been used to create prototypes and functional parts for various applications using plastic filaments. It has also been extended to the use of continuous fibers for reinforcing thermoplastic polymers. This study aims to optimize the deposition design of a coextruded continuous carbon fiber (CCF) composite filament with a polyethylene terephthalate glycol-modified (PETG) filament. The characterizations on the raw materials revealed that the matrix polymer in CCF composite filament had similar physicochemical properties as PETG, and carbon fibers were homogeneously distributed in CCF filament. The effect of raster orientation and shells number on the mechanical properties of non-reinforced and coextruded CCF-reinforced PETG was investigated. The highest mechanical properties were obtained at a raster orientation of 0° for both reinforced and non-reinforced materials. With the increase of raster orientation, Young's modulus and ultimate tensile strength decreased. The presence of shells improved the tensile strength of non-reinforced PETG. For composite samples printed with unreinforced shells, Young's modulus decreased due to decrease in fibers content, and elongation at break and ultimate tensile strength increased. Tomographic observations showed that the mechanical behavior of printed specimens depended on the anisotropy of porosity in printed specimens.  相似文献   

2.
Many processing parameters can be adjusted to optimize the fused filament fabrication (FFF) process, a popular and widely used additive manufacturing techniques for plastic materials. Among those easily adjusted parameters are the nozzle temperature, printing speed, raster orientation, and layer thicknesses. Using poly(ether ether ketone) (PEEK) as the base material, a design of experiments analysis was performed on the main FFF parameters. A response surface methodology was applied to analyze the results and to maximize the output responses. Results have shown that the nozzle temperature is the most influential parameter on tensile properties and the crystallinity degree of printed PEEK by FFF process. Parts produced with optimized FFF parameters were then subjected to an annealing treatment to induce a relaxation of residual stress and to enhance crystallinity. The best properties for 3D printed PEEK parts were achieved with annealed parts prepared at 400°C with a printing speed of 30 mm/s, 0.15 mm layer thickness and raster orientation of [0°/15°/−15°]. The resulting parts have mechanical properties comparable to those of injected PEEK.  相似文献   

3.
We report here a systematic investigation of the mechanical properties of polylactic acid (PLA) processed by fused filament fabrication (FFF) 3D printing vs PLA processed by compression molding. Our results show that the tensile strength and modulus of FFF-PLA is 49% and 41% lower, respectively, than compression molded samples of PLA. We also demonstrate here an approach to augment the mechanical properties of 3D printed PLA using nanocellulose. Incorporation of a small quantity (1 wt%) of cellulose nanofibers (CNF) was found to enhance the tensile strength and modulus of 3D printed PLA by 84% and 63%, respectively. X-ray microtomography was used to probe the morphology of 3D printed PLA and PLA/CNF composites. 3D printed PLA/CNF composites had significantly lesser voids as compared to neat 3D printed PLA. Differential scanning calorimetry study revealed that CNF can accelerate the nucleation and crystallization of 3D printed PLA leading to enhanced crystallinity. The thermal stability of 3D printed PLA/CNF composites was not compromised by the addition of CNF. The enhanced mechanical properties of 3D printed PLA/CNF composites can be ascribed to higher crystallinity and lesser defects.  相似文献   

4.
This study focused on the development of three-dimensional (3D) polymer composite filament made of disposable chopstick (DC) and post-consumer polypropylene (PPP). The PPP/DC composite parts were printed via fused filament fabrication (FFF) process. The effect of the printing temperature and different DC fiber content on the properties of the 3D printed parts were investigated. The printing temperature of 200–220°C was suitable for these filaments because the printing temperature did not show any thermal degradation, as proven by thermogravimetric analysis. Furthermore, the thermal stability of the 3D filament increased with DC content. The chemical modification with sodium hydroxide (NaOH) was carried out on DC to remove the unwanted organic components by showing changes in peak intensity in the Fourier transform infrared analysis. Moreover, the melt flow index of the composite filaments decreased with increasing of the DC content and caused the composites' viscosity increased. The results show that the optimum printing temperature of 210°C would reduce the warping and gave better tensile properties to the 3D printed parts. Nevertheless, the tensile strength and elongation at break of the 3D printed PPP/DC parts reduced as the DC content increased because the presence of some air gap and fiber pull out on the fracture surface of 3D printed parts, which are in line with the results observed from scanning electron microscopy. However, the tensile strength and elongation at break percentage of all 3D printed PPP/DC composite parts were higher in comparison with the 3D parts printed by commercial wood plastic composite filament.  相似文献   

5.
Fused filament fabrication (FFF), as one of the additive manufacturing technology, provides cost-effective and relatively fast preparation of 3D objects of desired dimensions and design. In this work, a composite filament containing 50 vol. % of sub-micron alumina powder was successfully used for the manufacturing of samples with prismatic design. The influence of the layer thickness (0.1–0.3 mm) on the final bulk density and mechanical properties were investigated. Sintering at 1600 °C for 1 h results in relative densities ranging from 80 to 89 % and the flexural strength reached 200–300 MPa depending on the layer thickness used for the printing.  相似文献   

6.
Today fused filament fabrication is one of the most widely used additive manufacturing techniques to manufacture high performance materials. This method entails a complexity associated with the selection of their appropriate manufacturing parameters. Due to the potential to replace poly-ether-ether-ketone in many engineering components, polyphenylene sulfide (PPS) was selected in this study as a base material for 3D printing. Using central composite design and response surface methodology (RSM), nozzle temperature (T), printing speed (S), and layer thickness (L) were systematically studied to optimize the output responses namely Young's modulus, tensile strength, and degree of crystallinity. The results showed that the layer thickness was the most influential printing parameter on Young's modulus and degree of crystallinity. According to RSM, the optimum factor levels were achieved at 338°C nozzle temperature, 30 mm/s printing speed, and 0.17 mm layer thickness. The optimized post printed PPS parts were then annealed at various temperatures to erase thermal residual stress generated during the printing process and to improve the degree of crystallinity of printed PPS's parts. Results showed that annealing parts at 200°C for 1 hr improved significantly the thermal, structural, and tensile properties of printed PPS's parts.  相似文献   

7.
As one of the most commonly used thermoplastics, polyester has rarely been used as the raw materials of 3D printing. However, copolyester obtained by copolymerization modifying polyester, such as Poly Ethylene Terephthalate Glycol (PETG), has been proven to be suitable for the fused filament fabrication (FFF) technique in previous studies, but the mechanical performance of printed products is still poor. In this paper, 3D printed PETG is in-situ reinforced by continuous carbon fiber (CCF), and the relationship between the process parameters and the mechanical performance of CCF/PETG is systematically investigated. The results show that the performance of 3D printed PETG is significantly enhanced by CCF in-situ reinforcement due to the effectively impregnation of CCF. By optimizing process parameters, the tensile strength, flexural strength and flexural modulus of CCF/PETG are 597%, 293% and 650% of pure PETG, respectively, with a relatively low fiber mass fraction of 19.2 wt%. This paper demonstrates that CCF in-situ reinforced 3D printed copolyester may be used in the manufacture of complex structural parts that require high mechanical performance in the engineering application.  相似文献   

8.
Unmodified polyvinyl chloride (PVC) has low thermal stability and high hardness. Therefore, using plasticizers as well as thermal stabilizers is inevitable, while it causes serious environmental and health issues. In this work, for the first time, pure food-grade PVC with potential biomedical applications is processed and 3D printed. Samples are successfully 3D printed using different printing parameters, including velocity, raster angle, nozzle diameter, and layer thickness, and their mechanical properties are investigated in compression, bending, and tension modes. Scanning electron microscopy is also used to evaluate the bonding and microstructure of the printed layers. Among the mentioned printing parameters, raster angle and printing velocity influence the mechanical properties significantly, whereas the layer thickness and nozzle diameter has a little effect. Images from scanning electron microscopy  also reveal that printing velocity greatly affects the final part's quality regarding defective voids and rasters’ bonding. The maximum tensile strength of 88.55 MPa is achieved, which implies the superiority of 3D-printed PVC mechanical properties compared to other commercial filaments. This study opens an avenue to additively manufacture PVC that is the second most-consumed polymer with cost-effective and high-strength features.  相似文献   

9.
The mechanical properties of materials printed using fused filament fabrication (FFF) 3D printers typically rely only on adhesion among melt processed thermoplastic polymer strands. This dramatically limits the utility of FFF systems today for a host of manufacturing and consumer products and severely limits the toughness in 3D printed shape memory polymers. To improve the interlayer adhesion in 3D printed parts, we introduce crosslinks among the polymer chains by exposing 3D printed copolymer blends to ionizing radiation to strengthen the parts and reduce anisotropy. A series polymers blended with specific radiation sensitizers, such as trimethylolpropane triacrylate (TMPTA) and triallyisocyanurate (TAIC), were prepared and irradiated by gamma rays. Differential scanning calorimetry (DSC), tensile testing, dynamic mechanical analysis (DMA) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) were employed to characterize the thermomechanical properties and the chemical structure of the various polymers. TAIC was shown to be a very effective radiation sensitizer for 3D printed sensitized polylactic acid (PLA). The results further revealed that crosslinks induced by radiation temperatures near Tg of shape memory systems have prominently enhanced the thermomechanical properties of the 3D printed polymers, as well as the solvent resistance. This enables us to deliver a new generation of inexpensive 3D printable, crosslinked parts with robust thermomechanical properties.  相似文献   

10.
Semi‐crystalline polymers are an important class of materials for engineering applications due to their high modulus and barrier properties. Traditional manufacturing methods process semi‐crystalline polymers via rigid molds and well‐controlled temperature and pressure environments to handle the significant change in specific volume occurring during crystallization; however, material extrusion additive manufacturing does not use these features. This often leads to warpage‐induced build failure in fused filament fabrication (FFF). To enable FFF of semi‐crystalline polymers, this work investigates characteristics of immiscible polymer blends (e.g., disparate crystallization behavior and phase separation) to mitigate warping failure during printing. A series of poly(ethylene terephthalate)/polypropylene/polypropylene–graft–maleic anhydride blends are explored and the effect of thermal and morphological characteristics on printability is analyzed. It is shown that these blends can be extruded into filament and printed into a 3D structure. Extrapolations indicate that phase‐separated blends with increased total crystallization half‐time are beneficial for FFF printing.  相似文献   

11.
Four processing parameters, layer thickness, printing speed, raster angle, and building orientation were investigated in terms of their effects on mechanical properties, surface quality, and microstructure of acrylonitrile‐butadiene‐styrene (ABS) samples in fused deposition modeling (FDM) by orthogonal experiments. The results show that both the building orientation and the printing layer thickness have a great influence on the mechanical properties of ABS specimens. When the layer thickness is 0.1 mm, samples printed in horizontal direction have the best mechanical performance. The vertical‐direction‐built parts generally have the worst tensile strength and impact resistance. Moreover, the layer surface quality of the products becomes worse with the increasing of layer thickness and printing speed. The influence of layer thickness on the roughness of FDM samples is still very significant. These researches are of great significance to explore the FDM molding mechanism and optimize processing parameters to meet the performance demands. POLYM. ENG. SCI., 59:120–128, 2019. © 2018 Society of Plastics Engineers  相似文献   

12.
This study aimed at assessing and optimizing the influence of printing speed and extrusion temperature in a fused filament fabrication (FFF) process on the tensile properties of a polylactide/layered silicate nanocomposite. Mathematical models using Doehlert designs were formulated to examine factor and interaction effects. The models were corroborated by measurements using capillary rheology, tomographic images, and crystallinity analyses to find physical explanations for the differences in tensile properties. The tensile properties were a non-monotonic function of printing speed, which may be due to various deposition defects that influence the porosity of composite tensile specimens. This study provides new insights into FFF process optimization regarding rheological behavior and mesostructure of nanocomposite by highlighting new modes of deposition defects that originate from process parameter settings and materials. The results contribute to the properties mastery of FFF-processed materials.  相似文献   

13.
A relatively new additive manufacturing machine called Freeformer was employed as an alternative to common Fused Filament Fabrication (FFF) machines. While FFF machines are fed with expensive and few commercially available filament feedstock, Freeformer is fed with cheap and common polymer pellets. In this study, more than 400 dumbbells made of Acrylonitrile Butadiene Styrene (ABS) were processed varying many processing conditions to evaluate their impacts on the structure and so on, the mechanical properties of 3D parts. Among processing parameter, nozzle temperature, manufacturing chamber temperature, discharge parameters, filling density, raster geometry, slicing distance, number of contour lines, processing speed, filling raster-contour lines overlap, and processing angles were studied. Images obtained with a scanning electron microscope and 3D part density estimations reveal strong changes on the 3D part structure as a function of the processing parameters so that tensile tests exhibit high variations between the 3D part mechanical properties.  相似文献   

14.
In this work, ionomers were employed to improve the adhesion between 3D printed layers of poly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate) (PETG), a commonly used polymer in 3D printing. The printability, rheology, and mechanical properties of PETG were tailored by incorporating poly(ethylene-co-methacrylic acid) neutralized with sodium (EMAA), a soft ionomer. PETG/EMAA polymer blends were prepared by melt extrusion to yield filaments for 3D fused filament fabrication (FFF) printing in different compositions by weight: 70/30, 50/50, and 30/70. The filaments and 3D printed samples were characterized by scanning electron microscopy, rheological and tensile tests. The results revealed that the interaction between PETG and EMAA favored the production of 3D printed samples with enhanced adhesion of layers, ductility, and toughness compared to neat PETG. Increases of 83.5 times in toughness and 86.4 times in ductility were achieved. The blends 30/70 and 50/50 presented the best printability in terms of adhesion between printed layers and mechanical properties.  相似文献   

15.
The present investigation aims at the thermal conditions for the printability of nylon using fused deposition modeling (FDM). Dog-bone like specimens are manufactured under two printing temperatures to measure the tensile performance of 3D printed nylon with respect to the feedstock material properties. Both Scanning Electron Microscopy (SEM) and X-ray micro-tomography analysis are conducted to shed more light on the microstructural arrangement of nylon filaments. Finite element computation based on microstructural implementation is considered to study the main deformation mechanisms associated with the nylon filament arrangement and the process-induced porosity. The results show a narrow temperature range for printability of nylon, and a significant influence of the printing temperature on the thermal cycling, porosity content and mechanical performance. With the support of both numerical and experimental results, complex deformation mechanisms are revealed involving shearing related to the filament sequencing, compression at the junction points and tension within the raster and the frame. All these mechanisms are associated with the particular and regular arrangement of nylon filaments.  相似文献   

16.
Fused filament fabrication (FFF) is the most common form of additive manufacturing. Most FFF materials are variants of commercially available engineering plastics. Their performance when printed can widely vary, thus there is an increasing volume of research on alternative materials with thermal and mechanical performance optimized for FFF. In this work, thiol–isocyanate polymerization is used for the development of a one‐pot synthesis for polythiourethane thermoplastics for tough three‐dimensional (3D) printing applications. The thiol–isocyanate reaction mechanism allows for rapid polymer synthesis with minimal byproduct formation and few limitations on reaction conditions. The resulting elastomer has high toughness and a low melting point, making it favorable for use as a 3D printing filament. The elastomer outperforms commercial filaments in tension when printed. Considering the rapid advancement of additive manufacturing and the limitations of many engineering polymers with the 3D printing process, these results are encouraging for the development of bespoke 3D printing thermoplastics. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45574.  相似文献   

17.
Additively manufactured polymeric products for automotive, aerospace, and biomedical applications are usually intended for service in an outdoor environment with high mechanical loading conditions. The strength and sustainability of the products can be significantly degraded due to the outdoor environmental conditions such as UV light, moisture, heat, and so forth. In this research work, a novel weather-resistant polymer (WRP) material, that is, acrylonitrile styrene acrylate (ASA), has been studied. Furthermore, this work aims to study the effect of process parameters and enhance the strength of WRP (ASA) specimens using the FFF process. The optimized process parameters, that is, build orientation (BO), extrusion temperature (ET), layer thickness (LT), and printing speed (PS), were identified based on the tensile and flexural strength using the Taguchi technique and statistical analysis. The best tensile and flexural strengths for the specimen were achieved at both orientations (XYZ and ZXY) TS: 255°C ET, 0.14 mm LT, 50 mm/s PS; and FS: 245°C ET, 0.28 mm LT, 50 mm/s PS, respectively. Regression model was developed to investigate the correlation between the process parameters with tensile and flexural strength. A validation test confirmed the findings, and the error between the actual and predicted values is less than ±10%.  相似文献   

18.
Fused filament fabrication (FFF) is an additive manufacturing technique that is used to produce prototypes and a gradually more important processing route to obtain final products. Due to the layer-by-layer deposition mechanism involved, bonding between adjacent layers is controlled by the thermal energy of the material being printed, which strongly depends on the temperature development of the filaments during the deposition sequence. This study reports experimental measurements of filament temperature during deposition. These temperature profiles were compared to the predictions made by a previously developed model. The two sets of data showed good agreement, particularly concerning the occurrence of reheating peaks when new filaments are deposited onto previously deposited ones. The developed experimental technique is shown to demonstrate its sensitivity to changing operating conditions, namely platform temperature and deposition velocity. The data generated can be valuable to predict more accurately the bond quality achieved in FFF parts.  相似文献   

19.
Fused deposition modeling (FDM) produces parts through layer by layer on the top of each other, making it almost impossible to obtain smooth printed parts. Hence, there is a huge demand for the postprocessing of the FDM-printed parts. Laser polishing is a novel technique that can be used to polish products to obtain a smoother surface. The aim of this work was to explore the feasibility of surface-finishing FDM-printed polylactic acid (PLA) parts by laser polishing. The surface roughness, surface morphology, dynamic mechanical analysis (DMA), and tensile properties were investigated. The results indicated that the lower laser power and the bigger laser beam diameter within a certain range could facilitate the formation of smoother surface. With optimized parameters, the surface roughness was reduced by 90.4%. DMA showed that the storage modulus (E’) and glass transition temperature of PLA specimens were significantly improved due to the decrease of molecular mobility of denser structures. Moreover, the tensile strength and Young's modulus of the PLA specimen were also significantly increased after laser polishing. The fracture morphologies were observed, and the possible strengthening mechanism was also discussed. These results indicated that laser polishing could be an efficient method for surface polishing of FDM parts. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48288.  相似文献   

20.
A method is proposed for determining the in situ shear modulus of a structural adhesive from a sandwich beam loaded in 3-point bending in which the adhesive is contained as a thin layer. Expressions for calculating the elastic shear modulus of the adhesive layer from compliance data on the beam are derived, and experimental tests to validate the theory are conducted. To verify the test results, tensile tests are also conducted, and the shear modulus for bulk adhesive is determined using the constitutive equation for an isotropic material relating tensile modulus and Poisson's ratio to shear modulus.

However, the bulk shear modulus as traditionally determined from a tensile test was up to an order of magnitude greater than the in situ shear modulus obtained from the 3-point bend test. A finite element simulation and sensitivity study replicated the experimental results of the 3-point bend tests, and showed that using the shear modulus obtained from the tensile tests would result in significant errors in predicting material and joint behavior. In addition, torsion tests were conducted on bonded cylinders to measure directly the shear modulus. The shear modulus from the torsion test was in agreement with the in situ modulus obtained from the 3-point bend test. This combined experimental-computational approach validated the 3-point bend test as a means to determine the in situ adhesive shear modulus. Finally, micrographs of the interface of the 3-point bend specimen indicated that adhesion occurred by the extension of adhesive pillars to the surface of the adherends. This pillaring phenomenon may have resulted in a lack of bonding along significant portions of the interface, and may explain the compliance of the 3-point bend specimens and, subsequently, the lower shear modulus. The repeatability of the experiments and the substantiation of the results of the experiments by finite element analysis suggest that this pillaring phenomenon may be a mechanism of adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号