首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated self-discharge characteristics of Li/S batteries using tetra ethylene glycol dimethylether (TEGDME) electrolyte. The open circuit voltages (OCV) and discharge curves were measured as a function of storage time. The self-discharge of the Li/S battery depended on current collectors. Li/TEGDME/S batteries with stainless steel (SUS) current collector showed the highest self-discharge rate of 59% per month. The self-discharge rate of Li/TEGDME/S battery using Al current collector is 34% during initial 80 days, but only 36% after 360 days storage. The discharge capacity decreases only 2% from 80 to 360 days. The self-discharge of Li/S battery using Al current collector is severe during initial 80 days, but is not an important factor after 80 days. Average self-discharge rate of Li/TEGDME/S battery using Al current collector is 3% per month for 1 year.  相似文献   

2.
Owing to increase in cost and low availability of Li source causes the high rate of the energy storage devices. By focusing on these issues, the cost effective and high performed electrode is needed for energy storage application. Na based electrodes can replace the Li ion batteries because of the availability of Na is higher than the Li. The cost of the energy storage devices can be reduced by using Na instead of Li. Many other electrodes are reported based on Na ion batteries. Since in this present work we prepared O3–NaFeO2 (NIO) high performance electrode prepared by two step hydrothermal assisted solid-state method. But the battery performance of NaFeO2 is suffers from capacity decay during long term cycling. For these issues naturally derived sucrose from the sugarcane is prepared which increase the electrochemical performance of Ac carbon coated NaFeO2 (AC Coated NIO). The AC Coated NIO electrode delivers the capacity of about 131 mAh g?1 at 80 mA g?1. The retention capacity of material is about 92% after 100 cycles. Such electrochemical action of the current electrode can show the way to cost effective and highly performed Na ion electrode development for Energy storage devices.  相似文献   

3.
合成了功能化离子液体1-丁基-3-甲基咪唑双(三氟甲磺酰)亚胺盐(BMIMTFSI)作为高压锂离子电池电解液添加剂,用于抑制有机溶剂的氧化,以提高碳酸酯类电解液的耐高压性。分别采用充放电测试、电化学交流阻抗(EIS)、循环伏安法(CV)和扫描电子显微镜(SEM)等研究了LiNi0.5Mn1.5O4/Li电池的电化学行为和LiNi0.5Mn1.5O4材料表面形貌。结果表明,当在电解液中添加20% (体积分数)BMIMTFSI时,LiNi0.5Mn1.5O4/Li电池在室温、0.2C下的最高放电比容量是126.81 mA·h·g-1,5C下的放电比容量为109.36 mA·h·g-1,比在1 mol·L-1 LiPF6-EC/DMC电解液中的放电比容量提高了91.7%;且该电池在0.2C下循环50圈后的放电比容量保持率在95%左右,比用碳酸酯类电解液提高了近10%。SEM结果表明,在碳酸酯类电解液中加入BMIMTFSI后,LiNi0.5Mn1.5O4电极表面附着了一层均匀且致密的固态电解质界面(SEI)膜。  相似文献   

4.
Several 1-alkyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquids (alkyl-DMimTFSI) were prepared by changing carbon chain lengths and configuration of the alkyl group, and their electrochemical properties and compatibility with Li/LiFePO4 battery electrodes were investigated in detail. Experiments indicated the type of ionic liquid has a wide electrochemical window (−0.16 to 5.2 V vs. Li+/Li) and are theoretically feasible as an electrolyte for batteries with metallic lithium as anode. Addition of vinylene carbonate (VC) improves the compatibility of alkyl-DMimTFSI-based electrolytes towards lithium anode and LiFePO4 cathode, and enhanced the formation of solid electrolyte interface to protect lithium anodes from corrosion. The electrochemical properties of the ionic liquids obviously depend on carbon chain length and configuration of the alkyl, including ionic conductivity, viscosity, and charge/discharge capacity etc. Among five alkyl-DMimTFSI-LiTFSI-VC electrolytes, Li/LiFePO4 battery with the electrolyte-based on amyl-DMimTFSI shows best charge/discharge capacity and reversibility due to relatively high conductivity and low viscosity, its initial discharge capacity is about 152.6 mAh g−1, which the value is near to theoretical specific capacity (170 mAh g−1). Although the battery with electrolyte-based isooctyl-DMimTFSI has lowest initial discharge capacity (8.1 mAh g−1) due to relatively poor conductivity and high viscosity, the value will be dramatically added to 129.6 mAh g−1 when 10% propylene carbonate was introduced into the ternary electrolyte as diluent. These results clearly indicates this type of ionic liquids have fine application prospect for lithium batteries as highly safety electrolytes in the future.  相似文献   

5.
《Ceramics International》2020,46(12):19960-19965
We fabricated and evaluated four types of Li batteries, in this case a LTO/liquid electrolyte/Li battery, a LTO/LiPON/Li all-solid-state battery, and LTO/LiPON + liquid electrolyte/Li batteries with and without a separator to investigate and clarify the effects of each interface. Through the present research, it was found that a conventional polymer-based separator increases the impedance in the middle frequency region, resulting in an increase in the total cell resistance. After replacing the polymer-based separator with a thin-film solid electrolyte, the cycleability and capacity of the cell were comparable to those of a conventional Li-ion battery with a polymer separator. The all-solid-state Li thin-film battery without a liquid electrolyte exhibits the lowest capacity due to the large interfacial resistance between the Li metal and the LiPON solid electrolyte. However, we found that the insertion of an Al2O3 interlayer between the Li and LiPON improves the capacity.  相似文献   

6.
Chi-Lin Li 《Electrochimica acta》2008,53(12):4293-4301
Nano-sized CuWO4 thin films have been fabricated by radio-frequency (R.F.) sputtering deposition, and are used as positive electrode with both LiClO4 liquid electrolyte and LiPON solid electrolyte in rechargeable lithium batteries. An initial discharge capacity of 192 and 210 mAh/g is obtainable for CuWO4 film electrode with and without coated LiPON in liquid electrolyte, respectively. An all-solid-state cell with Li/LiPON/CuWO4 layers shows a high-volume rate capacity of 145 μAh/cm2 μm in first discharge, and overcomes the unfavorable electrochemical degradation observed in liquid electrolyte system. A two-step reactive mechanism is investigated by both transmission electron microscopy and selected area electron diffraction techniques. Apart from the extrusion and injection of Cu2+/Cu0, additional capacity can be achieved by the reversible reactivity of (WO4)2− framework. The chemical diffusion coefficients of Li intercalation/deintercalation are estimated by cyclic voltammetry. Nano-CuWO4 thin film is expected to be a promising positive electrode material for high-performance rechargeable thin-film lithium batteries.  相似文献   

7.
《Ceramics International》2020,46(11):19127-19134
Negative thermal expansion materials will effectively counteract possible severe expansion and contraction due to the insertion and extraction of Li ions in lithium ion batteries. Herein, negative thermal expansion ZrScMo2VO12 and its carbon-coating composites are prepared as electrode material in lithium ion batteries by a heating treatment route. The galvanostatic charge/discharge process, cyclic voltammetry measurement and electrochemical impedance spectroscopy are tested to relate their thermal expansion and electrochemical properties. The initial specific capacity reaching 1062 mA h g-1 at the current density of 0.2 A g-1 is obtained with ideal negative thermal expansion properties. The reversible specific capacity still remains stable at 310 mA h g-1 for that material coated with carbon after 100 cycles. The corresponding theoretical simulations and in situ XRD patterns propose a Li ion storage mechanism based on Li ion insertion process in open framework structure. As a proof-of-concept research, this work paves a way to the promising application of negative thermal expansion materials in lithium ion batteries and other energy storage systems.  相似文献   

8.
The convection battery forces flow of electrolyte through the cathode, anode, and the separator between them, unlike a flow battery where electrolyte cannot cross the separator. The goal is to increase ion fluxes (A/cm2) to realize the benefit of thicker electrodes, lower cost batteries, and reduced charge times. A pump that circulates electrolyte was turned off to create a diffusion control to which the performance of the convection battery was compared. Based on performance at <1.1 V overpotential (based on a 3.1 V open circuit) and similar capacity utilization, the convection battery provided a 5.6‐fold increase in ion flux for these initial studies, increasing flux from 1.6 to 8–10 A/cm2. Little capacity fade was observed on the measured discharge cycles (10 cycles). These studies provided an important milestone in the research, development, and validation of a new battery design including cycling studies with lithium iron phosphate chemistry. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1774–1779, 2013  相似文献   

9.
Indole monomer was chemically polymerized to produce polyindole (PI) powder for use as a positive electrode material for lithium rechargeable batteries. Although the PI obtained was an oligomer with a low molecular weight corresponding to just 3 indole units, its electrochemical properties exhibited high d.c. electric conductivity comparable to that of the highly conducting polyaniline-LiPF6 or LiAsF6. A charge separation mechanism was also suggested to describe charge/discharge behavior of the oligo-indole (OI) protonated and/or lithiated in the Li||OI battery. Moreover, the lithium rechargeable battery adopting the OI as a positive electrode showed good cycleability with a discharge capacity of ∼55 mAh g−1, which did not decay until after more than 100 cycles.  相似文献   

10.
段曼华  程丹  肖伟  杨占旭 《化工进展》2022,41(5):2615-2622
为了改善锂电隔膜的耐热性、电解液亲和性和机械性能,本文以聚丙烯腈为主要材料,采用相转化法制备了聚酯无纺布支撑的聚丙烯腈微孔复合锂电隔膜,对隔膜的理化性能(孔道结构、机械性能、电解液性能和耐热性)和电池性能(循环性能、倍率性能)进行系统研究。结果表明,复合隔膜具有均匀的微孔结构,平均孔径约为425nm,孔隙率为74%,拉伸强度为30MPa;电解液亲和性良好,吸液率为385%,接触角接近0°,锂离子电导率较市售隔膜显著提高,达到1.65mS/cm;在150℃、0.5h的热处理条件下,复合隔膜的热收缩率为0。鉴于良好的理化特性,该隔膜所装配的钴酸锂/锂金属电池表现出优异的循环容量和倍率容量保持性,如在0.2C倍率下,经历200次循环后电池的放电容量保持率为95.2%,在10C倍率下电池的放电容量为0.5C倍率下的58.3%。因此,相转化法制备的聚丙烯腈基微孔复合隔膜在锂离子电池中显示出较好的应用前景。  相似文献   

11.
Lithium-sulfur (Li–S) batteries are attractive due to their high theoretical energy density. However, conventional Li–S batteries with liquid electrolytes undergo polysulfide shuttle-effect and lithium dendrite formation during charge/discharge process, leading to poor electrochemical performance and safety issues. Garnet type Li7La3Zr2O12 (LLZO) solid-state electrolyte (SSE) restricts the penetration of polysulfides and exhibits high ionic conductivity at room temperature (RT). Herein, Li6.5La3Zr1.5Nb0.5O12 (LLZNO) ceramic electrolyte using Li3PO4 (LPO) as sintering aids (LLZNO-LPO) is prepared by the rapid sintering method and is applied to construct a shuttle-effect free solid-state Li–S battery. The SSE displays high conductive pure cubic-LLZO phase; during the rapid sintering, LPO melts and junctions the voids between the grains, thus improves Li+ conductivity. As a result, the LLZNO-LPO ceramic electrolyte with Li+ conductivity of 4.3 × 10?4 S cm?1 and high critical current density (CCD) of 1.2 mA cm?2 is obtained at RT. The Li–S solid-state battery which utilizes LLZNO-LPO ceramic electrolyte can deliver an initial discharge capacity of 943 mA h·g?1 and 602 mA h·g?1 retention after 60 cycles. In the same time, the initial coulombic efficiency is as high as 99.5%, indicating that the SSE can effectively block the polysulfide shuttle towards the Li anode and fulfill a shuttle-free Li–S battery.  相似文献   

12.
锂-空气电池是比能量最高的二次电池,已成为当今化学电源领域的研究热点。在锂-空气电池的各个组件中,空气电极的设计和制备是进一步提高锂-空气电池性能的关键。以简单的合成方法制备了一种具有高催化活性的镍酸镧(LaNiO3)催化剂,利用Super P作为催化剂载体制备了一种新型空气电极。实验结果表明,含有LaNiO3催化剂的锂-空气电池具有良好的充放电性能,放电电压平台为2.59 V,放电容量达到1 109 mAh·g-1。比较了2种碳材料(Super P和GNS)作为催化剂载体的空气电极对电池充放电性能的影响,发现多孔性的空气电极结构更有利于电池性能的提高。此外,还分析了控制电解液(1 mol·L-1 LiTFSI/TEGDME)中水含量的必要性。由Super P、LaNiO3及水含量小于1×10-5的电解液(1 mol·L-1 LiTFSI/TEGDME)组装成的锂-空气电池具有良好的循环性能,循环第五圈的容量保持率为96.21%,且不出现电压平台的明显变化。  相似文献   

13.
Interfacial structures of electrode-current collector and electrode-electrolyte have been designed to be stabilized for improved cycling performance of amorphous silicon (Si) that is considered as an alternative anode material to graphite for lithium-ion batteries. Interfacial structural stabilization involves the interdigitation of Si electrode-Cu current collector substrate by anodic Cu etching with thiol-induced self-assembly, and the formation of self-assembled siloxane on the surface of Si electrode using silane. The novel interfacial architecture possesses promoted interfacial contact area between Si and Cu, and a surface protective layer of siloxane that suppresses interfacial reactions with the electrolyte of 1 M LiPF6/ethylene carbonate (EC):diethylene carbondate (DEC). FTIR spectroscopic analyses revealed that a stable solid electrolyte interphase (SEI) layer composed of lithium carbonate, organic compounds with carboxylate metal salt and ester functionalities, and PF-containing species formed when having siloxane on Si electrode. Interfacially stabilized Si electrode exhibited a high capacity retention 80% of the maximum discharge capacity after 200 cycles between 0.1 and 1.5 V vs. Li/Li+. The data contribute to a basic understanding of interfacial structural causes responsible for the cycling performance of Si-based alloy anodes in lithium-ion batteries.  相似文献   

14.
This investigation elucidates three maleimide (MI)-based aromatic molecules as additives in electrolyte that is used in lithium ion batteries. The 1.1 M LiPF6 in ethylene carbonate (EC):propylene carbonate (PC):diethylene carbonate (DEC) (3:2:5 in volume) containing MI-based additives can prompt the formation of a solid electrolyte interface (SEI); and inhibit the entering into the irreversible state during lithium intercalation and co-intercalation. The reduction potential is 0.71-0.98 V versus Li/Li+ as determined by cyclic voltammetry (CV). The morphology and element analysis of the positive and negative electrode after the 100th charge-discharge cycle are examined by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). Moreover, the MI was used in lithium ion batteries and provided 4.9% capacity increase and 16.7% capacity retention increase when cycled at 1C/1C. The MI-based additive also ensures respectable cycle-ability of lithium ion batteries. MI is decomposed electrochemically to form a long winding narrow SEI strip on the graphite surface. This novel SEI strip not only prevents exfoliation on the graphite electrode but also stabilizes the electrolyte. The MI-based additive also ensures respectable cycle-ability of lithium ion batteries.  相似文献   

15.
J.K. Feng  Y.L. Cao  X.P. Ai  H.X. Yang   《Electrochimica acta》2008,53(28):8265-8268
A novel compound, tri-(4-methoxythphenyl) phosphate, was synthesized and investigated as a safety electrolyte additive for lithium-ion batteries. It was found that this additive could lower the flammability of the electrolyte, and thereby enhance the thermal stability of the Li-ion battery. Moreover, this molecule can also be polymerized at 4.35 V (vs. Li/Li+) to form a conducting polymer, which can protect the batteries from voltage runaway at overcharge by internal bypassing the overcharging current in the batteries. Thus, it is possible to use this electrolyte additive to provide both overcharge protection and flame retardancy for lithium-ion batteries without much influence on the battery performance.  相似文献   

16.
凝胶聚合物电解质的电化学性能   总被引:5,自引:0,他引:5       下载免费PDF全文
张森  史鹏飞 《化工学报》2005,56(2):329-332
用化学交联法制备了凝胶聚合物电解质.聚烯烃多孔膜支撑的凝胶聚合物电解质具有优良的电化学性能, 室温电导率为1.01×10-3S&#8226;cm-1,锂离子迁移数为0.41,在Al电极上的氧化起始电位达到4.2 V以上.采用聚烯烃多孔膜支撑的凝胶聚合物电解质制备了聚合物锂离子电池,并研究了工艺条件对聚合物锂离子电池电化学性能的影响.研究的工艺条件包括:单体添加量和电极组合方式.优化后的聚合物锂离子电池具有良好的电化学性能,1 C放电容量为0.2 C放电容量的93.2%,经100次1 C循环后的剩余容量仍在80%以上.  相似文献   

17.
One of the key factors responsible for the poor cycleability of Li–O2 batteries is a formation of byproducts from irreversible reactions between electrolyte and discharge product Li2O2 and/or intermediate LiO2. Among many solvents that are used as electrolyte component for Li–O2 batteries, acetonitrile (MeCN) is believed to be relatively stable towards oxidation. Using near ambient pressure X-ray photoemission spectroscopy (NAP XPS), we characterized the reactivity of MeCN in the Li–O2 battery. For this purpose, we designed the model electrochemical cell assembled with solid electrolyte. We discharged it first in O2 and then exposed to MeCN vapor. Further, the discharge was carried out in O2?+?MeCN mixture. We have demonstrated that being in contact with Li–O2 discharge products, MeCN oxidizes. This yields species that are weakly bonded to the surface and can be easily desorbed. That’s why they cannot be detected by the conventional XPS. Our results suggest that the respective chemical process most probably does not give rise to electrode passivation but can decrease considerably the Coulombic efficiency of the battery.  相似文献   

18.
This work reports the electrochemical characterization of a micro-scale FeSn2 electrode in a lithium battery. The electrode is proposed as anode material for advanced lithium ion batteries due to its characteristics of high capacity (500 mAh g−1) and low working voltage (0.6 V vs. Li). The electrochemical alloying process is studied by cyclic voltammetry and galvanostatic cycling while the interfacial properties are investigated by electrochemical impedance spectroscopy. The impedance measurements in combination with the galvanostatic cycling tests reveal relatively low overall impedance values and good electrochemical performance for the electrode, both in terms of delivered capacity and cycling stability, even at the higher C-rate regimes.  相似文献   

19.
Lithium-air(also known as lithium-oxygen) batteries have attracted considerable global attention in recent years due to their extremely high energy density(11,140 W·h·kg~(-1)).The electrolyte is a key element in lithium-air batteries and the traditional organic electrolyte has great safety risk due to leakage.On the contrary,the polymer electrolyte has the advantages of high safety,high stability and easy processing comparing with the organic liquid electrolytes.In this paper,a new idea was proposed to coat the Nafion membrane on a layer of polymer for blocking the oxidation reduction electric(RM) and Li based on the selective permeability on lithium ion of the Nafion membrane.Self-made thicknesscontrollable Nafion membrane,polyvinylidene fluoride-hexafluoropropylene copolymer(PVDF-HFP)and 2,2,6,6-tetramethylpiperidinooxy(TEMPO) were used to prepare a quasi solid polymer electrolyte(NSPE).Electrochemical workstation and LAND battery testing system were used to perform a galvanostatic charge/discharge test on Li-O_2.The ionic conductivity of NSPE was 4.3 × 10~(-4) S·cm~(-1) at room temperature and the discharge platform was 2.6 V and the charging voltage was 3.7 V after 50 cycles with the cut-off capacity of 500 mA·h·g~(-1).  相似文献   

20.
Simplified models based on porous electrode theory are used to describe the discharge of rechargeable lithium batteries and derive analytic expressions for the specific capacity against discharge rate in terms of the relevant system parameters. The resulting theoretical expressions are useful for design and optimization purposes and can also be used as a tool for the identification of system limitations from experimental data. Three major cases are considered that are expected to hold for different classes of systems being developed in the lithium battery industry. The first example is a cell with solution phase diffusion limitations for the two extreme cases of a uniform and a completely nonuniform reaction rate distribution in the porous electrode. Next, a discharge dominated by solid phase diffusion limitations inside the insertion electrode particles is analysed. Last, we consider an ohmically-limited cell with no concentration gradients and having an insertion reaction whose open-circuit potential depends linearly on state of charge. The results are applied to a cell of the form Li|solid polymer electrolyte|LiyMn2O4 in order to illustrate their utility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号