首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanical properties of the glass fiber reinforced Polyamide (PA6) composites made by prepreg tapes and commingled yarns were studied by in‐plane compression, short‐beam shear, and flexural tests. The composites were fabricated with different fiber volume contents (prepregs—47%, 55%, 60%, and commingled—48%, 48%, 49%, respectively) by using vacuum consolidation technique. To evaluate laminate quality in terms of fiber wet‐out at filament level, homogeneity of fiber/matrix distribution, and matrix/fiber bonding standard microscopic methods like optical microscopy and scanning electron microscopy (SEM) were used. Both commingled and prepreg glass fiber/PA6 composites (with Vf ∼ 48%) give mechanical properties such as compression strength (530–570 MPa), inter‐laminar shear strength (70–80 MPa), and transverse strength (80–90 MPa). By increasing small percentage in the fiber content show significant rise in compression strength, slight decrease in the ILSS and transverse strengths, whereas semipreg give very poor properties with the slight increase in fiber content. Overall comparison of mechanical properties indicates commingled glass fiber/PA6 composite shows much better performance compared with prepregs due to uniform distribution of fiber and matrix, better melt‐impregnation while processing, perfect alignment of glass fibers in the composite. This study proves again that the presence of voids and poor interface bonding between matrix/fiber leads to decrease in the mechanical properties. Fractographic characterization of post‐failure surfaces reveals information about the cause and sequence of failure. POLYM. COMPOS., 36:834–853, 2015. © 2014 Society of Plastics Engineers  相似文献   

2.
玻璃纤维增强热塑性塑料的发展概况   总被引:5,自引:0,他引:5  
叶鼎铨 《中国塑料》2005,19(2):8-11
根据玻璃纤维增强热塑性塑料的发展过程分别介绍了短纤维增强热塑性塑料、玻璃纤维毡增强热塑性塑料、玻璃纤维/热塑性塑料复合纤维、长纤维增强热塑性塑料和热塑性拉挤产品的制造方法、特性和应用。  相似文献   

3.
Long glass fiber–reinforced thermoplastic composites were prepared by a new process, in situ solid‐state polycondensation (INSITU SSP). In this process reinforcing continuous fibers were impregnated by the oligomer of PET melt, and then the impregnated continuous fibers were cut to a desired length (designated prepreg); finally, the prepreg was in situ polymerized in the solid state to form the high molecular weight matrix. SEM, FTIR spectra, short‐beam shear stress test, flexural strength test, impact strength test, and the intrinsic viscosity measurement were used to investigate the wetting and interfacial adhesion, the mechanical properties of the composite, and the molecular weight of matrix resin in the composite. The results showed that the molecular weight of PET in the matrix resin and mechanical properties could be adjusted by controlling the SSP time and that the high level of interfacial adhesion between reinforcing fibers and matrix resin could be achieved by this novel INSITU SSP process, which are attributed to the good wetting of reinforcing fibers with low molecular weight oligomer melt as the impregnation fluid, the in situ formation of chemical grafting of oligomer chains onto the reinforcing fiber surface, and the in situ formation of the high molecular weight PET chains in the interphase regions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:3959–3965, 2004  相似文献   

4.
Tensile and flexural tests on specimens cut from rectangular injection‐molded plaques show that long‐fiber filled thermoplastic composites are complex, non‐homogeneous, anistropic material systems. Like all fiber‐filled materials, they exhibit through‐thickness nonhomogeneity as indicated by differences between tensile and flexural properties. The in‐plane orientation of fibers in through‐thickness layers causes the material to have in‐plane anisotropic properties. However, these long‐fiber filled materials exhibit an unexpectedly large level of in‐plane nonhomogeneity. Also, the effective mechanical properties of these materials are strongly thickness dependent. The thinnest plaques exhibit the largest differences between the flow and cross‐flow tensile properties. These differences decrease with increasing thickness. A methodology for part design with this class of materials is discussed.  相似文献   

5.
Among the synthetic fibers, glass fibers (GF) are most widely used in thermoplastic short‐fiber‐reinforced polymers (SFRP), as they offer good strength and stiffness, impact resistance, chemical resistance, and thermal stability at a low price. Carbon fibers (CF) are applied instead of GF, when highest stiffness is required. Other types of synthetic fibers like aramid (AF), basalt (BF), polyacrylonitrile (PAN‐F), polyethylene terephthalate (PET‐F), or polypropylene fibers (PP‐F) are rarely used in SFRP, although they offer some advantages compared with GF. The aim of this article is, to give an overview of various fiber types with regard to their mechanical properties, densities, and prices as well as the performance of their thermoplastic composites. The mechanical properties are presented as Ashby plots of tensile strength versus tensile modulus, both in absolute and specific (absolute value divided by density) values. This overview also focuses on modification of fiber/matrix interaction, as interfacial adhesion has a huge impact on composite performance. A summary of established methods for characterization of fibers, polymers, and composites completes this article. POLYM. COMPOS., 35:227–236, 2014. © 2013 Society of Plastics Engineers  相似文献   

6.
Jute‐fibers‐reinforced thermoplastic composites are widely used in the automobile, packaging, and electronic industries because of their various advantages such as low cost, ease of recycling, and biodegradability. However, the applications of these kinds of composites are limited because of their unsatisfactory mechanical properties, which are caused by the poor interfacial compatibility between jute fibers and the thermoplastic matrix. In this work, four methods, including (i) alkali treatment, (ii) alkali and silane treatment, (iii) alkali and (maleic anhydride)‐polypropylene (MAPP) treatment, and (iv) alkali, silane, and MAPP treatment (ASMT) were used to treat jute fibers and improve the interfacial adhesion of jute‐fiber‐reinforced recycled polypropylene composites (JRPCS). The mechanical properties and impact fracture surfaces of the composites were observed, and their fracture mechanism was analyzed. The results showed that ASMT composites possessed the optimum comprehensive mechanical properties. When the weight fraction of jute fibers was 15%, the tensile strength and impact toughness were increased by 46 and 36%, respectively, compared to those of untreated composites. The strongest interfacial adhesion between jute fibers and recycled polypropylene was obtained for ASMT composites. The fracture styles of this kind of composite included fiber breakage, fiber pull‐out, and interfacial debonding. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers.  相似文献   

7.
A new method is presented for the development of natural fiber composites of high‐performance thermoplastic polymers considering poly(phenylene ether) (PPE) and wood flour as an example system. The large gap between the high processing temperature of PPE, typically between 280 and 320°C, and the low decomposition temperature of wood flour, about 200°C, was reduced by using a reactive solvent, a low molecular weight epoxy. The epoxy formed miscible blends with PPE, which offered much lower viscosity compared to PPE and processing temperatures well below the decomposition temperature of wood flour. In addition, the epoxy component accumulated around the polar wood flour particles upon polymerization during the fabrication step. The composite materials consisted of a thermoplastic continuous phase and two dispersed phases, one of polymerized epoxy and the other of wood flour particles coated with polymerized epoxy. These composites offered a significant reduction in density and better mechanical and physical properties when compared to commercially available grades of engineering polymer blends filled with short glass fibers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2159–2167, 2002  相似文献   

8.
对石英纤维布进行了高温脱蜡处理,并制成了石英布增强氰酸酯树脂基预浸料及其复合材料,对比了脱蜡处理前后预浸料的理化性能和工艺性的变化,以及复合材料介电性能和力学性能的变化。结果表明,脱蜡处理后的石英布/氰酸酯预浸料的工艺性能更好,复合材料的介电性能保持不变,力学性能显著提高,其中弯曲强度提高31%,层间剪切强度提高16%,脱蜡后界面结合更好。  相似文献   

9.
This article presents the results of the experimental study on manufacturing and mechanical evaluation of poly(L ‐lactide‐co‐glycolide) (PLGA)‐based fibers modified with ceramic nanoparticles. Study was conducted to establish the effect of biomimetic formation of apatite layers on polymeric fibers on their mechanical properties. The tensile tests were performed to determine the influence of polymer crystallinity and the presence of hydroxyapatite nanoparticles (nanoHAp) on mechanical properties of PLGA fibers coated with hydroxyapatite (HAp) layer. HAp deposits on the surfaces of the fibers precipitated from simulated body fluid (SBF). Three types of fibers coated with HAp layers were compared in mechanical tests. The results indicated that by using a biomimetic fiber coating method the mechanical properties of the fibers are affected by their crystallinity. The nanoHAp modified polymer fibers after incubation in SBF were found to have a continuous HAp layer. The layer affected the mechanical behavior (force–strain function) of the fibers from nonlinear to linear, typical of ceramic materials. The tensile modulus of the fibers with a continuous layer was found to increase with the apatite layer thickness, whereas the tensile strength decreases. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
GF/PP混纤纱及其复合材料性能初探   总被引:1,自引:1,他引:0  
通过实验,对混纤纱制备热塑性复合材料进行了相关的工艺探索,并对试样进行了测试。结果表明,采用混纤纱法制备的热塑性复合材料制品的综合力学性能比SFT、LFT、GMT均优异,仅次于Twintex。随着玻纤含量的提高,混纤纱的拉伸强度、拉伸模量均明显提高,而弯曲强度和弯曲模量则呈现出先升后降的趋势。试验指出了存在的有关原材料本身和混纤工艺存在的问题,并提出了解决方法和今后的研究方向。  相似文献   

11.
This article presents the results of a study of the processing and physicomechanical properties of environmentally friendly wood‐fiber‐reinforced poly(lactic acid) composites that were produced with a microcompounding molding system. Wood‐fiber‐reinforced polypropylene composites were also processed under similar conditions and were compared to wood‐fiber‐reinforced poly(lactic acid) composites. The mechanical, thermomechanical, and morphological properties of these composites were studied. In terms of the mechanical properties, the wood‐fiber‐reinforced poly(lactic acid) composites were comparable to conventional polypropylene‐based thermoplastic composites. The mechanical properties of the wood‐fiber‐reinforced poly(lactic acid) composites were significantly higher than those of the virgin resin. The flexural modulus (8.9 GPa) of the wood‐fiber‐reinforced poly(lactic acid) composite (30 wt % fiber) was comparable to that of traditional (i.e., wood‐fiber‐reinforced polypropylene) composites (3.4 GPa). The incorporation of the wood fibers into poly(lactic acid) resulted in a considerable increase in the storage modulus (stiffness) of the resin. The addition of the maleated polypropylene coupling agent improved the mechanical properties of the composites. Microstructure studies using scanning electron microscopy indicated significant interfacial bonding between the matrix and the wood fibers. The specific performance evidenced by the wood‐fiber‐reinforced poly(lactic acid) composites may hint at potential applications in, for example, the automotive and packaging industries. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4856–4869, 2006  相似文献   

12.
Quasi‐static tensile, out‐of compression, in‐plane compression, three‐point‐bending and shear tests were conducted to reveal the mechanical behavior and failure mechanisms of three‐dimensional (3D) multiaxial warp‐knitted (MWK) carbon/epoxy composites. The characterization of the failure process and deformation analysis is supported by high‐speed camera system and Digital Image Correlation. The results show that tensile, bending, out‐of‐plane compression, in‐plane compression stress–strain response exhibit obvious linear elastic feature and brittle fracture characteristics, whereas the shear response exhibits a distinct nonlinear behavior and gradual damage process. Meanwhile, 3D MWK carbon/epoxy composites have good mechanical properties, which can be widely used in the fields of engineering. In addition, the failure for tension behaves as interlayer delaminating, 90/+45/−45° interface debonding and tensile breakage of 0° fibers; the damage for out‐of‐plane compression is mainly interlaminar shear dislocation together with local buckling and shear fracture of fibers; the failure pattern for in‐plane compression is 90° fiber separating along fiber/matrix interface as well as 0/+45/−45° fiber shear fracture in the shear plane. The main failure for bending is fiber/matrix interface debonding and fibers tearing on the compression surface, 0° fibers breakage on the tension surface as well as fiber layers delaminating. Although the shear behavior is characterized by a gradually growing shear matrix damage, 90/+45/−45° interface debonding, +45/−45° fibers shear fracture, and final 0° fiber compression failure. POLYM. COMPOS., 37:3486–3498, 2016. © 2015 Society of Plastics Engineers  相似文献   

13.
Interply and intraply hybrid composites based on Bisphenol A Dicyanate ester (BADCy), high strength carbon fibers T300, and high modulus carbon fibers M40 were prepared by monofilament dip‐winding and press molding technique. The tensile, flexural, interlaminar shear properties and SEM analysis of the hybrid composites with different fiber content and fiber arrangement were investigated. The results indicated that the mechanical properties of intraply hybrid composites were mainly determined by fiber volume contents. When the ratio of fiber volume content was close to 1:1, the intraply hybrid composites possessed lowest tensile and flexural strength. The mechanical properties of interply hybrid composite mainly depended on the fiber arrangement, instead of the fiber volume contents. The hybrid composites using T300 fiber layout as outside layer possessed high flexural strength and low flexural modulus, which was close to that of T300/BADCy composites. The hybrid composites ([(M40)x/(T300)y]S) using M40 fiber layout as outside layer and T300 fibers in the mid‐plane had high flexural modulus and interlaminar shear strength. POLYM. COMPOS., 2010. © 2010 Society of Plastics Engineers  相似文献   

14.
《Polymer Composites》2017,38(12):2798-2805
The thermoplastic matrix composites have gained great importance in last three decades. The chopped basalt fiber (mineral fiber) is considered to be a good fiber due to excellent properties as potential reinforcement of composite materials. In this work, composites of chopped basalt fiber (6 mm) with thermoplastic material Nylon‐6 (Polyamide‐6) were prepared and its mechanical and morphological properties were evaluated for automobile applications. The melt blending was carried out in corotating twin‐screw extruder and injection‐molded test samples were prepared for the analysis. The test samples of composite without coupling agent prepared by varying the loading of basalt fiber content of 5%, 10%, 15%, 20%, and 25% by weight and with coupling agent composite loading of Nylon‐6 and basalt fiber content were kept constant and the coupling agent (PE‐g‐MA) loading were changed as 1, 2, 3, 4, and 5 phr. The Mechanical and SEM properties were evaluated. From the test results, it was observed that the mechanical properties were improved with increasing coupling agent ratio. SEM images show good dispersion and adhesion of matrix and reinforcement. POLYM. COMPOS., 38:2798–2805, 2017. © 2015 Society of Plastics Engineers  相似文献   

15.
The large‐scale fabrication of the flexible fiber‐shaped micro‐supercapacitors has received major attention from both industrial and academic researchers. Herein, conductive and robust polyaniline‐wrapped multiwall carbon tubes reduced graphene oxide/thermoplastic polyurethane (PANI/MCNTs‐rGO/TPU) composite fibers are successfully fabricated on a large scale via the combination of facile microfluidic‐spinning process and in situ polymerization of aniline. Initially, MCNTs‐rGO/TPU fibers are formed in a T‐shape microfluidic chip, relying on the fast material diffusion and exchange in the microfluidic channel. Then, PANI/MCNTs‐rGO/TPU hybrid fibers are synthesized through an in situ chemical oxidative polymerization of aniline. With the assistance of polyaniline, these PANI/MCNTs‐rGO/TPU hybrid fibers exhibit enhanced electrochemical properties in comparison with pure MCNTs‐rGO/TPU fibers, especially in high specific capacitance, which is dramatically increased from 42.1 to 155.5 mF cm?2. Moreover, the PANI/MCNTs‐rGO/TPU hybrid fibers can endure various blending stresses, contributing to its outperforming flexibility and weavability. The best of the excellent electrochemical and mechanical properties of these conductive fibers is made to construct the flexible supercapacitors and various complicated functional fabrics.  相似文献   

16.
The reinforcing effect of two structurally different Aramid short fibers, Technora and Twaron on the mechanical, dynamic mechanical, and thermal properties of an ester‐based thermoplastic polyurethane (TPU) was investigated. A fixed fiber length of 6 mm is used by varying the fiber loading ranging from 3 to 10 phr. The Young's modulus and the low strain modulus of Technora–TPU composite was found three times higher than that of Twaron–TPU composite at all ranges of fiber loading. Optical microscopic analysis revealed that a severe processing‐induced fiber breakage of Twaron is the primary reason behind the inferior properties shown by these fiber‐reinforced TPU composite. A brittle kind of failure has been observed during tensile testing in both the composite at a fiber loading of 10 phr. To solve this problem, an economic pretreatment with maleic anhydride‐grafted polybutadine (PB‐g‐MA) has been applied on the Aramid fiber surface before mixing it with the TPU matrix. A good quality of fiber dispersion with significant improvement in mechanical properties could be achieved with the addition of only 5 phr of PB‐g‐MA. Morphological analyses on the tensile‐fractured and cryogenically fractured surfaces of these composites offer strong evidences for the dispersing and coupling action of PB‐g‐MA with these Aramid fibers and the TPU matrix. POLYM. COMPOS., 35:1767–1778, 2014. © 2013 Society of Plastics Engineers  相似文献   

17.
Natural fiber‐based thermoplastic composites are generally lower in strength performance compared to thermoset composites. However, they have the advantage of design flexibility and recycling possibilities. Hybridization with small amounts of synthetic fibers makes these natural fiber composites more suitable for technical applications such as automotive interior parts. Hemp fiber is one of the important lignocellulosic bast fiber and has been used as reinforcement for industrial applications. This study focused on the performance of injection‐molded short hemp fiber and hemp/glass fiber hybrid polypropylene composites. Results showed that hybridization with glass fiber enhanced the performance properties. A value of 101 MPa for flexural strength and 5.5 GPa for the flexural modulus is achieved from a hybrid composite containing 25 wt % of hemp and 15 wt % of glass. Notched Izod impact strength of the hybrid composites exhibited great enhancement (34%). Analysis of fiber length distribution in the composite and fracture surface was performed to study the fiber breakage and fracture mechanism. Thermal properties and resistance to water absorption properties of the hemp fiber composites were improved by hybridization with glass fibers. Overall studies indicated that the short hemp/glass fiber hybrid polypropylene composites are promising candidates for structural applications where high stiffness and thermal resistance is required. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2432–2441, 2007  相似文献   

18.
The effect of PPS matrix evolution occurring during thermal treatment of carbon fiber‐reinforced PPS plies prior to their consolidation to laminates on the mechanical behavior of the composite material has been investigated. The thermal treatments were performed at temperatures and times, which are relevant for processing PPS composites. All thermal treatments were carried out in an oven in air to facilitate the presence of oxygen, while the subsequent consolidation was performed in an autoclave. The tensile and in‐plane shear behavior of both, thermal‐treated and untreated materials, was investigated. Differential scanning calorimetry and microscopy analyses were made to evaluate the effect of the performed thermal treatments on degree of crystallinity and porosity of the laminates. The mechanical tests carried out have shown an appreciable degradation of the mechanical properties investigated. The observed degradation increases with increasing thermal treatment temperature and time when thermal treatments were carried out on each single composite ply prior to the consolidation. On the other hand, when, prior to the consolidation, the whole set of plies was subjected to thermal treatment, improved mechanical properties were observed. The results were discussed under the viewpoint of PPS matrix evolution during processing of the composite plies in the presence of oxygen. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
The effects of seawater exposure on the mechanical properties of unidirectional T700 carbon fiber/vinylester (510A) composites have been examined. Carbon fibers with two different types of sizings (F and G) were studied. Dynamic mechanical analysis testing of the neat resin and a carbon/vinylester composite revealed similar viscoelastic responses and glass transition temperatures indicating same type of cured resin for both cases. An analysis of moisture absorption dynamics of the composites revealed Fickian behavior. The composites absorbed more moisture than the resin. The moisture up‐take in the composites is dominated by the fiber/matrix region. A comprehensive mechanical test program involving tension, compression, and shear tests was conducted on the composites at dry and saturated conditions. Composites with F‐sized carbon fibers displayed overall higher strengths than those with G‐sized fibers at both dry and moisture‐saturated conditions. Moisture absorption was found to have a moderate influence on most composite strengths, except for the in‐plane and interlaminar shear strengths, where reductions in the range of 10–16% occurred. POLYM. COMPOS., 35:1559–1569, 2014. © 2013 Society of Plastics Engineers  相似文献   

20.
Polyimide composites reinforced with short‐cut fibers such as carbon, glass, and quartz fibers were fabricated by the polymerization of monomer reactants process. The mechanical properties of the composites with different fiber contents were evaluated. The friction and wear properties of the polyimide and its composites were investigated under dry‐sliding and water‐lubricated conditions. The results indicated that the short‐carbon‐fiber‐reinforced polyimide composites had better tensile and flexural strengths and improved tribological properties in comparison with glass‐fiber‐ and quartz‐fiber‐reinforced polyimide composites. The incorporation of short carbon fibers into the polyimide contributed to decreases in the friction coefficient and wear rate under both dry and water‐lubricated conditions and especially under water lubrication because of the boundary lubrication effect of water. The polyimide and its composites were characterized by plastic deformation, microcracking, and spalling under both dry and water‐lubricated conditions, which were significantly abated under the water‐lubricated condition. The glass and quartz fibers were easily abraded and broken; the broken fibers transferred to the mating metal surface and increased the surface roughness of mating stainless steel, which led to the wear rate increasing for the glass‐fiber‐ and quartz‐fiber‐reinforced polyimide composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号