首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyclic ablation behavior of C/C–ZrC–SiC composites prepared by precursor infiltration and pyrolysis process was studied using oxyacetylene torch. After repeated 30 s ablation for four times, the composites exhibited better ablation properties than those under single ablation for 120 s because of the lower surface temperature, and their linear and mass ablation rates were −3×10–4 mm/s and −2.29×10–3 g/s, respectively. A continuous ZrO2–SiO2 layer formed on the surface of center ablation region and acted as an effective barrier to the transfer of heat and oxidative gases into the inner material. Thermal stress induced by repeated impact of oxyacetylene led to some cracks on the ZrO2–SiO2 layer; however its destructive power was weaker than that of higher temperature. Stick like silica as grown silica nanowires were generated in the transition ablation region due to the evaporation of silicon oxide at appropriate temperature.  相似文献   

2.
Thermal-cured, sol–gel derived, waterborne organosilane–polyester coatings (SiE) have been developed using methyltrimethoxysilane, 3-glycidoxytrimethoxysilane and polyester resin for corrosion protection of aluminum AA6011. The structural and morphological features of the coatings were analyzed by Fourier transform infrared spectroscopy (FT-IR) and atomic force microscopy (AFM). Results show that the coatings on aluminum were smooth, continuous and defect-free. Performance of the SiE coatings were investigated and compared with pure organosilane coating and polyester coating using potentiodynamic polarization studies, contact angle measurement and pencil hardness test. Results from polarization studies have shown that the SiE coated substrate (4.6–13.1 × 10−7 A/cm2) provided a better corrosion protection than the polyester coated substrate (7.8 × 10−6 A/cm2) due formation of aluminum–oxygen–silicon covalent bond at aluminum-coating interface. Furthermore, SiE coatings provided better hydrophobicity and hardness than the polyester coating.  相似文献   

3.
Platinum loaded carbon layers were synthesized by a two-step plasma sputtering process. Two hundred nanometers thick columnar (columns with an average diameter of 20 nm) carbon films having a large open porosity were formed in the first step. Using the same plasma system, the films were subsequently loaded with platinum. SEM, TEM and Rutherford backscattering spectrometry analysis show that platinum diffuses into the carbon layer and forms nano-sized particles (mean diameter ca. 3 nm) along and around the carbon nanocolumns and down to the film/support interface. Optimized catalytic layers were formed at low plasma pressure operation (<1 Pa) and had an upper platinum loading limit of about 0.1 mg cm−2.  相似文献   

4.
In this paper we report on a surface treatment to seed substrates for the promotion of diamond nucleation. This surface treatment consists of an ultrasonic abrasion process using poly-disperse slurry composed of a mixture of small diamond particles (<0.25 μm) and larger particles (>3 μm) which may consist of diamond, alumina, titanium, etc. Whereas ultrasonic abrasion with a mono-disperse diamond slurry results in a diamond nucleation density of ∼2–3×108 particles/cm2, treatment with poly-disperse slurries results in diamond nucleation density of values up to ∼5×1010 particles/cm2. This effect was found to display a similar effectiveness on a variety of substrates such as silicon, sapphire, quartz, etc. The enhancement in diamond nucleation is interpreted by a ‘hammering’ effect whereby the larger particles insert very small diamond debris onto the treated surface, thus increasing the density of nuclei onto which diamond growth takes place during the chemical vapor deposition process. By increasing the nucleation density to values of ∼5×1010 particles/cm2, continuous diamond films of thickness of less than ∼100 nm were grown after only 5 min of deposition. The roughness of continuous diamond films grown on substrates treated at optimum conditions obtains values of 15–20 nm. The effect of ultrasonic treatment on silicon substrates and the deposited films was investigated by atomic force microscopy (AFM), high-resolution scanning electron microscopy (HR-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.  相似文献   

5.
Porous and multi-layer network of interconnected silver particles is deposited by galvanic displacement on a technologically relevant substrate, silicon with an aluminum/copper film. The mean particle diameter is approximately 200 nm and the particle density in a single layer is 109 particles per cm2. Cyclic voltammetry and electrochemical impedance spectroscopy reveal that capacitance normalized to the electrode geometric area reaches a value of 1.7 ± 0.2 mF/cm2, which is about two orders of magnitude higher than that observed on a smooth silver/electrolyte interface. The specific surface area of silver particles, which are assumed to be spherical, is 2.7 m2/g. The electrolyte accessible surface area is slightly larger (3.5 m2/g) due to the surface roughness of silver particles. The frequency response of the porous network of silver particles is analyzed using the transmission line model. The “knee” frequency is determined to be around 200 Hz. The described capacitor could find applications for special electronic circuits where a high-frequency response is needed.  相似文献   

6.
In this work, we have prepared electrodes through the electrodeposition of platinum micro particles on SnO2 thin films in order to verify the application of this system as a catalyst for the electrooxidation of methanol. The oxide films were prepared through the method of polymeric precursor decomposition and calcinated at 550 °C. The employed oxides have proved to be a good matrix for the dispersion of platinum particles since they present high roughness. The maximum electrooxidation current was attained for a platinum content of approximately 600 μg cm−2. The chronoamperometric results showed that the current values obtained for the electrooxidation of methanol were up to 10 times higher than the current values obtained with platinized platinum under the same conditions. The possible mechanisms that lead to this enhancement were discussed.  相似文献   

7.
CVD diamond coated tungsten carbide tools have been used for cutting and drilling of soft materials such as aluminum and copper alloys. However, it is very difficult to obtain a tool having a sharp tip of the order of sub-μm by mechanical abrasive polishing methods. Therefore, we applied ion beam processing for sharpening the cutting edge of diamond coated tungsten carbide tools. Result shows that it is possible to obtain a 20-80 nm order tip width of a CVD diamond coated knife processed by a 0.5-10 keV Ar+ ion beam, and the sharpening speed of a tip of the knife depends on the ion beam energy. Namely, a tip width of a knife processes by a 1.0 keV Ar+ ion beam at an ion dose of 2.7 × 1020 ions/cm2 becomes 20 nm, and a tip width of a knife processed by a 10 keV Ar+ ion beam at an ion dose of 5.4 × 1019 ions/cm2 becomes 40 nm. However, a facet with an apex angle in the range of 60-100° was formed on the cutting edge of a knife with an initial apex angle of 55°, and we found that the facet angle can be controlled by choosing ion beam energy of 0.5-10 keV. Moreover, results show that the processed knife machined by a 0.5 keV Ar+ ion beam has very smooth rake and flank faces, and also has a small line edge roughness of the cutting edge compared to those of the sharpened knife by a 1.0-10 keV Ar+ ion beam.  相似文献   

8.
Uniform zeolite beta particles about 800 nm in diameter were synthesized by a hydrothermal method, and functionalized by γ-glycidoxypropyltrimethoxysilane (GPTMS). Subsequently, chitosan (CS) membranes filled by GPTMS-modified zeolite beta particles were prepared, and characterized by SEM, FT-IR, XRD and TGA. Compared with the pure CS and Nafion®117 membrane, these CS/zeolite beta hybrid membranes show apparently the lower methanol permeability, which could be assigned to the better interfacial morphology and compatibility between the GPTMS-modified zeolite beta particles and chitosan matrix. In all the prepared CS/zeolite beta hybrid membranes, the CS membrane filled by 10 wt.% GPTMS-modified zeolite beta particles exhibits the lowest methanol permeability, which is 4.4 × 10−7 and 2.2 × 10−7 cm2 s−1 at 2 and 12 M methanol concentration, respectively. The proton conductivity of this hybrid membrane is 1.31 × 10−2 S cm−1, which is slightly lower than that of the pure CS membrane. The selectivity of CS/GPTMS-zeolite beta membranes is comparable with Nafion® 117 at 2 M methanol concentration, and much higher at 12 M methanol concentration.  相似文献   

9.
A novel electrochemical procedure for preparation of the very stable, thin modifying layer onto the n-type Si surface was elaborated. The modification consisted of platinum or/and ruthenium ultrafine particles etched into the porous Si film. A unique sequence of modifications was applied: at first the metal particles were evenly electrodeposited onto a flat silicon surface, and in the next electrochemical step the porous structure was produced. The platinum coverage and mean particle diameter were well controlled by the electrochemical programs. All the attempts and progress in modifications were monitored by scanning electron microscope (SEM) observations. Furthermore, the materials obtained were compared with the non-porous, Pt or/and Ru modified electrodes by testing them as anodes in the photoelectrochemical (PEC) cell with organic Br2/2Br solution.In general, the porous photo-anodes gave higher output powers and the light-to-electricity conversion efficiencies. The best performance was observed for the PEC cell employing the porous anode with sequentially electrodeposited Ru and Pt particles, respectively (PS-Si/Ru/Pt).1 This cell maintained good electrical parameter values during the 2-week tests, having a maximum output power equal to 0.23 mW/cm2 and a cell conversion efficiency of 8.5%. The PS-Si/Pt photo-anode gained 0.21 mW/cm2 and 7.8%, respectively.  相似文献   

10.
《Electrochimica acta》2001,46(1-2):345-352
Fine platinum (Pt) particles were deposited electrochemically on n-type silicon (n-Si) electrodes from an aqueous hexachloroplatinic acid(IV) solution by the single potential step (SPS) and double potential step (DPS) methods. The distribution density of the Pt particles on n-Si was 108 cm−2 for the SPS method, whereas it increased from 109 to 1010 cm−2 by a shift of the pulse potential at the initial step of the DPS method from −1.0 to −4.0 V versus SCE and remained nearly constant at more negative potentials. The size of the Pt particles enlarged with the charge density passing across the electrode surface at a potential of −0.70 V versus SCE, which was applied throughout for the SPS method and at the second step for the DPS method. Photoelectrochemical (PEC) solar cells equipped with Pt-electrodeposited n-Si electrodes generated open-circuit photovoltages (VOC) of 0.51–0.61 V, much higher than those for n-Si electrodes coated with continuous Pt layers (ca. 0.2–0.3 V). Solar cell characteristics changed with the pulsed potential and charge density passing across the electrode surface which changed the size and distribution density of the Pt particles. The characteristics were explained well by our previous theory on metal-dot coated n-Si electrodes.  相似文献   

11.
The corrosion of AA-2024 aluminum alloy protected with a chromate free primer is investigated after immersion in a 0.5 M NaCl aqueous solution. The water uptake by the coating increases continuously when the film, applied on an aluminum AA-2024 substrate, is placed in the 0.5 M NaCl solution. This increase is attributed to corrosion reactions taking place at the alloy/coating interface when water molecules reach the interface. The maximum water volume fraction absorbed by a similar coating applied on platinum substrate is 3.5 vol% and the permeability is 7.6 × 10−12 m2 s−1. After 72 h immersion in the 0.5 M NaCl solution, the Nyquist representation of impedance data shows transmission line behavior that can be assigned to percolation pathway along the filler particles after water uptake. Charge transfer and diffusion of corrosion reactants and products occur, but no delamination was observed for immersion longer than 172 h. Furthermore, the coating resistance is still close to 108 Ω cm−2 after this immersion time. This accounts for the good protective performance of the coating.  相似文献   

12.
The oxygen incorporation at the interface between the silicon substrate and chemical vapour deposited (CVD) diamond films nucleated by the bias-enhanced nucleation (BEN) procedure has been studied by heavy-ion elastic recoil detection (ERD). Using standard process conditions for the realisation of heteroepitaxial films, oxygen with a concentration equivalent to about 1 nm SiO2 has been found, which was mainly incorporated during textured growth with a certain CO2 admixture to the process gas. By completely omitting CO2 during nucleation and growth, the oxygen at the interface can be reduced by nearly one order of magnitude to 6.3×1015 at cm−2, corresponding to 0.14 nm SiO2. Intentional addition of highly enriched C18O2 to the gas phase shows that the oxygen incorporation is strongly enhanced during BEN with hydrocarbon in the gas phase. The results indicate that roughening of the surface, the deposition of SixOyCz phases and strong lateral inhomogeneities at the silicon interface may explain the coexistence of epitaxial crystallites and amorphous phases. It is suggested that a further reduction of the oxygen concentration at the interface may have consequences for an improved heteroepitaxy of diamond on silicon.  相似文献   

13.
Focused ion beam (FIB) technique is a well established technique for processing and modifying materials at micro- and nanoscale. FIB implantation with 30 keV Ga+ ions into a single crystal diamond has been studied via a combination of transmission electron microscopy (TEM) imaging and spectroscopy in the attempt to understand the damage formation in diamond. The damage formation has been studied as a function of implantation dose with eight different doses ranging from 6 × 1014 to 1 × 1016 ions/cm2. The TEM studies have revealed different structure of low-dose and high-dose implanted regions. 3.5 nm diamond cap layer was observed in the low-dose implanted layer. TEM analysis has shown volume extension of around 50% in the amorphous region and up to 7% in diamond at the crystal-amorphous interface. The density of amorphous damage layer was measured to be 2.51 g/cm3 and 2.24 g/cm3 in the low-dose and high-dose implanted regions, respectively. The amorphisation threshold for ion implantation in diamond at room temperature was determined to be 5.2 × 1022 vacancies/cm3.  相似文献   

14.
In this research, a SiC/ZrB2 coating was produced on graphite by reactive melt infiltration and plasma spraying method. The coating characterization was performed using XRD analysis, electron microscopy equipped with energy dispersive spectrometer (EDS), and supersonic flame ablation test at 2073 K. The results indicated that the dense C/SiC coating with good ablation resistance can be obtained at 1873 K. The coating thickness decreased with increasing infiltration temperature. The results of ablation test showed that by increasing the infiltration temperature and holding time, weight loss and mass ablation rate decreased from 22.63% to 9.83% and 3.63 × 10−3 g cm−2 s−1 to 1.34 × 10−3 g cm−2 s−1, respectively. The results showed that by using the ZrB2 as outer coating the ablation resistance improved remarkably. The weight loss and mass ablation rates for the SiC/ZrB2 coating were 12.79% and 1.857 × 10−3 g cm−2 s−1, respectively.  相似文献   

15.
ZrC ablation protective coating for carbon/carbon composites   总被引:2,自引:0,他引:2  
A zirconium carbide (ZrC) protective coating was deposited on carbon/carbon (C/C) composites by atmospheric pressure chemical vapor deposition. The phase compositions, surface and cross-section microstructures, and anti-ablative properties of the coatings were investigated. Results show that the method is an effective route to prepare a dense and thick ZrC coating on C/C composites. The coating can effectively protect C/C composites from ablation for 240 s in an oxy-acetylene torch system with a mass ablation rate of 1.1 × 10−4 g/cm2 s and a linear ablation rate of 0.3 × 10−3 mm/s.  相似文献   

16.
《Ceramics International》2022,48(1):508-513
High-energy continuous-wave (CW) laser has been considered as a significant technology in recent decades. Such laser can destroy conventional materials in an extremely short time, necessitating their protection. In this study, zirconium carbide (ZrC) and silicon carbide (SiC) particle-modified short silicon carbide fiber-reinforced phenolic resin matrix composites (SiC/BPF-ZS) with significant anti-laser performance were designed and prepared. Our results showed that the ceramic particles and SiC fibers rapidly oxidized, leading to the formation of a ceramic coating composed of ZrO2 and SiO2. Owing to the formation of the ceramic coating, the reflectivity of the composites improved significantly from 15.8% to 73.2% after ablation at 500 W/cm2 for 30 s. Additionally, the SiC fibers played an important role in the formation of a high-reflectivity coating during laser ablation. Contrast experiments indicated that SiC fibers lead to better performance than the carbon fibers. The high reflectivity and low mass ablation rate are demonstrated to be the key factors improving the anti-laser ablation performance of the SiC/BPF-ZS composites.  相似文献   

17.
The design of nanostructured biological architectures based on host–guest interactions between β-cyclodextrin and adamantane was investigated on SWCNT coatings using glucose oxidase (GOX) as biomolecule model. β-Cyclodextrin tagged GOX was immobilized on adamantane functionalized carbon nanotubes, deposited on platinum electrodes. Different functionalization techniques to attach “pyrene adamantane” on nanotubes were studied and compared in terms of the performances of the subsequently constructed glucose biosensors. The best results were obtained by dipping the nanotube deposit into a pyrene-adamantane solution followed by electropolymerization of the adsorbed pyrene monolayer. The constructed biosensor exhibited a good linear response toward glucose concentrations between 2 × 10−7 M and 1.6 × 10−3 M. The maximum current density and glucose sensitivity were 154.9 μA cm−2 and 14.4 mA M−1 cm−2, respectively.  相似文献   

18.
Detonation nanodiamond (ND) particles were dispersed on silicon nitride (SiNx) coated sc-Si substrates by spin-coating technique. Their surface density was in the 1010–1011 cm?2 range. Thermal stability and surface modifications of ND particles were studied by combined use of X-ray Photoelectron Spectroscopy (XPS) and Field Emission Gun Scanning Electron Microscopy (FEG SEM). Different oxygen-containing functional groups could be identified by XPS and their evolution versus UHV annealing temperature (400–1085 °C) could be monitored in situ. The increase of annealing temperature led to a decrease of oxygen bound to carbon. In particular, functional groups where carbon was bound to oxygen via one σ bond (C–OH, C–O–C) started decomposing first. At 970 °C carbon–oxygen components decreased further. However, the sp2/sp3 carbon ratio did not increase, thus confirming that the graphitization of ND requires higher temperatures. XPS analyses also revealed that no interaction of ND particles with the silicon nitride substrate occurred at temperatures up to about 1000 °C. However, at 1050 °C silicon nitride coated substrates started showing patch-like damaged areas attributable to interaction of silicon nitride with the underlying substrate. Nevertheless ND particles were preserved in undamaged areas, with surface densities exceeding 1010 cm?2. These nanoparticles acted as sp3-carbon seeds in a subsequent 15 min Chemical Vapour Deposition run that allowed growing a 60–80 nm diamond film. Our previous study on Si(100) showed that detonation ND particles reacted with silicon between 800 and 900 °C and, as a consequence, no diamond film could be grown after Chemical Vapour Deposition (CVD). These findings demonstrated that the use of a thin silicon nitride buffer layer is preferable insofar as the growth of thin diamond films on silicon devices via nanoseeding is concerned.  相似文献   

19.
A hydrothermal reaction has been adopted to synthesize pure LiFePO4 first, which was then modified with carbon coating and cupric ion (Cu2+) doping simultaneously through a post-heat treatment. X-ray diffraction patterns, transmission electron microscopy and scanning electron microscopy images along with energy dispersive spectroscopy mappings have verified the homogeneous existence of coated carbon and doped Cu2+ in LiFePO4 particles with phospho-olivine structure and an average size of 400 nm. The electrochemical performances of the material have been studied by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge–discharge measurements. The carbon-coated and Cu2+-doped LiFePO4 sample (LFCu5/C) exhibited an enhanced electronic conductivity of 2.05 × 10−3 S cm−1, a specific discharge capacity of 158 mAh g−1 at 50 mA g−1, a capacity retention of 96.4% after 50 cycles, a decreased charge transfer resistance of 79.4 Ω and superior electrode reaction reversibility. The present synthesis route is promising in making the hydrothermal method more practical for preparation of the LiFePO4 material and enhancement of electrochemical properties.  相似文献   

20.
《Ceramics International》2017,43(3):3439-3442
C/ZrC-SiC composites with a density of 3.09 g/cm3 and a porosity of 4.8% were prepared by reactive melt infiltration and vapour silicon infiltration. The flexural strength and modulus were 235 MPa and 18.3 GPa, respectively, and the fracture toughness was 7.0 MPa m1/2. The formation of SiC and ZrSi2 during vapour silicon infiltration, at the residual cracks and pores in the C/ZrC, enhanced the interface strength and its mechanical properties. The high flexural strength (223 MPa, c. 95% of the original value) after oxidation at 1600 °C for 10 min indicated the excellent oxidation resistance of the composites after vapour silicon infiltration. The mass loss and linear recession rate of the composites were 0.0071 g/s and 0.0047 mm/s, respectively and a fine ablation morphology was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号