首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
生物相容性是医用高分子材料应用中必须解决的关键问题,通过表面改性以改善生物医用高分子材料的生物相容性的研究备受关注。分别从物理、化学、仿生三方面对生物医用高分子材料的表面改性方法及进展进行了综述。  相似文献   

2.
张立英 《山西化工》2005,25(3):11-13,33
对医用高分子材料的目前需求作了简要分析,介绍了医用高分子材料的主要类别、用途及其特殊要求,并浅谈了医用高分子材料的发展及展望。  相似文献   

3.
4.
生物医用材料   总被引:3,自引:0,他引:3  
概述了生物医用材料的类型及性质,提出了对生物医用材料的要求,化学和生物学的融合为找寻新型材料开辟了新途径。展望了医用材料的前景。  相似文献   

5.
徐美琦  吴江 《广东化工》2023,(7):105-107
生物医用高分子材料是材料学、化学、生物医学、临床医学等多学科交叉的国际前沿研究领域。淀粉作为天然高分子材料,因其原料来源丰富、生物相容性好、安全无毒、可降解等诸多优点,在生物医学领域显示出了良好的应用前景。本文综述了近年来淀粉及其改性产物在止血材料、药物释放、组织工程支架和细胞培养等生物医用材料领域的进展,并对其在该领域的未来发展进行了展望。  相似文献   

6.
谭英杰  梁玉蓉 《山西化工》2005,25(4):17-19,66
阐述了生物医用高分子材料的应用研究与发展状况,综述了国内外生物医用高分子材料的分类、特性及研究成果,展望了未来的生物医用高分子材料的发展趋势。  相似文献   

7.
生物医用水凝胶材料的研究进展   总被引:1,自引:0,他引:1  
罗芳 《广东化工》2011,(8):104-105
简述了医用水凝胶材料的基本要求,文章主要介绍了生物医用水凝胶材料的优点及研究热点。讨论了水凝胶材料合适的医用范围,预测了医用水凝胶材料的发展方向。  相似文献   

8.
简要介绍了静电纺丝技术的基本原理及其发展历程。从组织工程支架、医用敷料、载药系统方面综述了静电纺丝纳米纤维在生物医用领域的具体应用,总结了这些领域的发展现状,展望了未来我国医用纺织材料的发展方向。指出静电纺丝技术存在可用于电纺的聚合物种类不够多、纺丝速度慢、批量工业化生产还有许多工艺技术需要完善等不足之处,但对于静电纺纳米纤维的微观形貌、直径、力学性能及材料的生物相容性的研究,已取得成效,静电纺丝仍会成为制备医用材料最为广泛的技术之一。  相似文献   

9.
介绍了氧化石墨烯的结构、性能,综述了关于氧化石墨烯的细胞毒性、生物相容性的研究,概述了氧化石墨烯在胶原基复合材料、胶原基组织工程支架材料以及胶原基创伤敷料等生物医用材料中的应用,展望了其发展前景。  相似文献   

10.
胡平 《塑料加工》2005,40(3):1-14
从三个方面介绍了生物医用高分子材料工作情况:(1)三种可降解材料:聚羟基烷酸酯、两亲性聚氨酯弹性体、可注射性水凝胶;(2)利用各种制造了多种复杂形状的组织工程支架;(3)其它医用材料,并对医用支架材料表面进行了改性。  相似文献   

11.
This study deals with the investigation of photocurable thiol‐yne resins covering several important aspects for the production of medical devices by UV‐based manufacturing processes. In this context, the performance of different low‐toxic photoinitiators (PIs) and stabilizers are evaluated in thiol‐yne formulations based on di(but‐1‐yn‐4‐yl) carbonate and various multifunctional thiol monomers. Photodifferential scanning calorimetry measurements reveal that the conversion of all resin formulations is mostly independent on the type and concentration of the applied photoinitiator; however, significant differences in their curing speed are observed. It turns out that the migration of an alkyne derivatized photoinitiator is significantly reduced while providing almost similar photoactivity as its nonfunctionalized reference. Moreover, it is found that lauryl gallate and butylated hydroxytoluene lead to significant stabilization without affecting the overall photoreactivity. Notably, the thermomechanical properties of the investigated photopolymers are only slightly affected by water absorption. Using ester free thiols, water absorption can be reduced and hydrolytically stable polymers are realized. These results highlight the versatility of the present thiol‐yne system for the production of medical materials by photopolymerization.

  相似文献   


12.
聚氨酯水凝胶在生物医学中的应用   总被引:5,自引:0,他引:5  
综述了近年来聚氨酯水凝胶在生物医学工程中药物控释、创伤敷料、接触眼镜以及外科植入器械等领域的研究及发展情况,最后展望了聚氨酯水凝胶在生物医学中应用的发展趋势和方向。  相似文献   

13.
聚乳酸在生物医学领域中的应用   总被引:5,自引:0,他引:5  
简要介绍高分子量聚乳酸的合成方法、良好的生物相容性、可吸收性及生物降解性。通过概述聚乳酸在药物释放材料、眼科材料、外科手术缝合线、骨折内固定材料以及组织工程修复等方面的应用,对其在生物医学领域的研究前景作了进一步展望。  相似文献   

14.
概述了医用聚氨酯材料的结构特点及其特性,介绍了国外主要医用聚氨酯产品生产现状,综述了聚氨酯材料在生物支架组织工程如人工心脏及心脏辅助装置、心导管、颌面修复材料和人工软骨等方面的应用,指出医用聚氨酯材料存在的问题以及未来的发展方向。  相似文献   

15.
The availability, biocompatibility, non-toxicity, and ease of chemical modification make cellulose a promising natural polymer for the production of biomedical materials. Cryogelation is a relatively new and straightforward technique for producing porous light and super-macroporous cellulose materials. The production stages include dissolution of cellulose in an appropriate solvent, regeneration (coagulation) from the solution, removal of the excessive solvent, and then freezing. Subsequent freeze-drying preserves the micro- and nanostructures of the material formed during the regeneration and freezing steps. Various factors can affect the structure and properties of cellulose cryogels, including the cellulose origin, the dissolution parameters, the solvent type, and the temperature and rate of freezing, as well as the inclusion of different fillers. Adjustment of these parameters can change the morphology and properties of cellulose cryogels to impart the desired characteristics. This review discusses the structure of cellulose and its properties as a biomaterial, the strategies for cellulose dissolution, and the factors affecting the structure and properties of the formed cryogels. We focus on the advantages of the freeze-drying process, highlighting recent studies on the production and application of cellulose cryogels in biomedicine and the main cryogel quality characteristics. Finally, conclusions and prospects are presented regarding the application of cellulose cryogels in wound healing, in the regeneration of various tissues (e.g., damaged cartilage, bone tissue, and nerves), and in controlled-release drug delivery.  相似文献   

16.
邢辉  陈晓明  张宏泉 《佛山陶瓷》2004,14(12):33-35
寻找理想的支架材料是目前骨组织工程研究的热点。本文阐述了用于骨组织丁程支架材抖的天然生物衍生材料、聚合物类材料、陶瓷材料及其复合材料等的研究现状,分析了这些材料的优缺点,并展望了骨组织工程支架材料的发展趋势。  相似文献   

17.
Hydrogels from biopolymers are readily synthesized, can possess various characteristics for different applications, and have been widely used in biomedicine to help with patient treatments and outcomes. Polysaccharides, polypeptides, and nucleic acids can be produced into hydrogels, each for unique purposes depending on their qualities. Examples of polypeptide hydrogels include collagen, gelatin, and elastin, and polysaccharide hydrogels include alginate, cellulose, and glycosaminoglycan. Many different theories have been formulated to research hydrogels, which include Flory-Rehner theory, Rubber Elasticity Theory, and the calculation of porosity and pore size. All these theories take into consideration enthalpy, entropy, and other thermodynamic variables so that the structure and pore sizes of hydrogels can be formulated. Hydrogels can be fabricated in a straightforward process using a homogeneous mixture of different chemicals, depending on the intended purpose of the gel. Different types of hydrogels exist which include pH-sensitive gels, thermogels, electro-sensitive gels, and light-sensitive gels and each has its unique biomedical applications including structural capabilities, regenerative repair, or drug delivery. Major biopolymer-based hydrogels used for cell delivery include encapsulated skeletal muscle cells, osteochondral muscle cells, and stem cells being delivered to desired locations for tissue regeneration. Some examples of hydrogels used for drug and biomolecule delivery include insulin encapsulated hydrogels and hydrogels that encompass cancer drugs for desired controlled release. This review summarizes these newly developed biopolymer-based hydrogel materials that have been mainly made since 2015 and have shown to work and present more avenues for advanced medical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号