首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用玄武岩短纤维(BF)增强硅橡胶,制备了BF/硅橡胶复合材料,考察了硅烷偶联剂的种类、BF用量以及硫化条件对复合材料力学性能的影响,并用扫描电子显微镜观察了复合材料的微观形貌。结果表明,用KH 550对BF进行表面处理,所得复合材料的力学性能优于以Si 69处理的材料;当BF用量为20份时,BF/硅橡胶复合材料的力学性能最好;制备复合材料的最佳硫化条件为10 MPa×175℃×25 min;用KH 550处理BF,BF与硅橡胶的相容性比用Si 69处理的好。  相似文献   

2.
《弹性体》2015,(2)
利用碳纤维增强氟橡胶,研究了碳纤维含量对氟橡胶力学性能的影响,偶联剂对碳纤维/氟橡胶复合材料性能的影响,确定碳纤维增强氟橡胶的最佳用量及制备复合材料的最佳硫化条件,通过红外光谱(IR)和扫描电镜(SEM)分析探讨碳纤维/氟橡胶橡胶复合材料的形貌和结构。结果表明,短切碳纤维与氟橡胶的最佳质量比为12∶100,偶联剂为3-氨丙基三乙氧基硅烷(KH500),其用量为2.5份。最佳硫化条件为:硫化时间为15min,硫化温度为170℃,硫化压力为10MPa。红外光谱表明,碳纤维与氟橡胶之间生成了C—Si—O化学键,提高了氟橡胶和碳纤维的相容性,扫描电镜(SEM)表明用偶联剂KH550处理过的碳纤维在橡胶中的排列整齐,无明显断面、孔隙,相界面之间结合得很好。  相似文献   

3.
《塑料科技》2017,(11):67-71
采用偶联剂对麦秸粉进行表面处理,利用共混技术制备聚丁二酸丁二醇酯(PBS)/麦秸粉复合材料,研究了偶联剂对PBS/麦秸粉复合材料力学性能和降解性能的影响。结果表明:当麦秸粉用量为20%时,PBS/麦秸粉复合材料的力学性能最佳,降解速率也明显提高;偶联剂KH550的改性效果较好,当KH550用量为2%时,较好地改善了PBS与麦秸粉的界面相容性,材料断裂面呈韧性断裂,提高了复合材料的力学性能,而对其降解速率影响不大。  相似文献   

4.
武卫莉    李爽 《合成橡胶工业》2015,(5):372-375
用碳纤维(CF)作增强相、氯丁橡胶(CR)作基相及硅烷偶联剂作相容剂,制备了CF/CR复合材料,考察了CF用量、硅烷偶联剂的种类及用量、硫化条件对复合材料热老化前后性能的影响,并用扫描电子显微镜(SEM)和傅里叶变换红外光谱(FTIR)仪对其结构进行了表征。结果表明,制备CF/CR复合材料的最佳配方为:CR 100份,CF 12份,KH 550 2.5份;最佳硫化条件为:温度175℃,压力10 MPa,时间30 min。SEM和FTIR分析表明,KH 550处理的CF比未处理及用Si 69处理的CF与CR的相容性更好。  相似文献   

5.
采用共混法制备了玉米秸秆/废胶粉复合材料,并以4种不同偶联剂(硅烷偶联剂KH 550、KH 590、Si 69和钛酸酯偶联剂HY 101)分别对复合材料进行界面改性,探讨了玉米秸秆的增强及偶联剂改性对复合材料力学性能、界面形貌和组成结构及热稳定性的影响。结果表明,玉米秸秆的加入可有效提高复合材料的力学性能。偶联剂改性处理明显改善了玉米秸秆与废胶粉基质间的界面结合,进一步提高了复合材料的力学性能、热稳定性和相容性。综合来看,当玉米秸秆用量为25份(质量)时,在四种偶联剂用量均为玉米秸秆质量分数6%的条件下,采用Si 69的改性效果最佳,KH 590次之,HY 101和KH 550的改性效果则较为一般。  相似文献   

6.
以硅橡胶和氟橡胶为基体,玄武岩短纤维(BF)作增强相,制备了BF/硅橡胶/氟橡胶复合材料。考察了BF的长度、用量、偶联剂种类以及硫化条件对复合材料力学性能的影响。结果表明,BF的用量为7份、长度为12 mm、硅烷偶联剂为KH 590时,复合材料的综合性能最佳。最佳的一段硫化条件为170℃×10 MPa×30 min,最佳的二段硫化条件为200℃×360 min。改性BF的加入提高了硅橡胶与氟橡胶的相容性,使得复合材料的力学性能和热稳定性能得到提高。  相似文献   

7.
采用熔融共混法制备了尼龙66/煤系高岭土复合材料,研究了不同高岭土表面处理法和偶联剂用量对复合材料力学性能、颜色和流变性能的影响。结果表明,用不同偶联剂对高岭土进行表面改性处理,均可提高复合材料的冲击韧性,且以KH–550偶联剂质量分数为1.5%时复合材料综合力学性能最佳。随着偶联剂KH–550用量增加,复合材料的颜色由黄黑逐渐变亮白,熔体流动速率(MFR)增大,当KH–550质量分数为1.5%时,复合材料的MFR为14.6 g/10 min,具有很好的流变性能。  相似文献   

8.
《弹性体》2015,(1)
用高性能的碳纤维(CF)作增强剂,橡胶作基相及偶联剂作为相容剂制备了CF/橡胶复合材料。用CF增强顺丁橡胶(BR)、丁苯橡胶(SBR)、天然橡胶(NR)、丁腈橡胶(NBR)、三元乙丙橡胶(EPDM)4640、4045及4045M、氯丁橡胶(CR)、丙烯酸酯橡胶(ACM)和甲基乙烯基硅橡胶(MVQ),通过力学性能和热老化测试,确定CF适合增强的胶种及用量。用偶联剂作相容剂研究了偶联剂对橡胶和CF相容性的影响;通过红外光谱(IR)和扫描电镜(SEM)分析了CF和橡胶交联结构的相容性。结果表明,CR为基相,复合材料的力学性能最好;MVQ作基相,复合材料的热稳定性最好。获得最佳力学性能配方为:CR 100份,CF 12份,偶联剂KH550 2.5份,白炭黑20份,防老剂D 1份,促进剂M 1份,硬脂酸1份,硫黄1份,氧化锌8份。CF增强CR的最佳固化条件为:固化温度175℃,固化压力10MPa,固化时间30min。通过SEM和IR分析,进一步确定CF、KH550和CR的混合相容性最好。  相似文献   

9.
由于硅橡胶具有较好的耐热性但力学性能比较差,本文用高性能的碳纤维作增强剂,硅橡胶(MVQ)作基相及偶联剂作为相容剂制备了碳纤维/硅橡胶复合材料。通过力学性能和热老化测试,确定碳纤维的用量。用偶联剂作相容剂研究了偶联剂对硅橡胶和碳纤维相容性影响;通过傅里叶变换红外光谱(FTIR)和扫描电镜(SEM)分析了碳纤维和硅橡胶交联结构和相容性。结果显示,制备了碳纤维/硅橡胶复合材料的最佳配方为硅橡胶 100份,碳纤维 12份,KH-550 2.5份。碳纤维增强硅橡胶的最佳硫化条件为:温度 175℃,压力为10MPa,时间为30min。由扫描电镜和红外光谱分析,进一步论证了用KH-550处理的比没有处理及用Si69处理的碳纤维与硅橡胶的混合相容性好。  相似文献   

10.
武卫莉  王晶 《弹性体》2011,21(4):79-84
以废胶粉(URP)为基体相,粉煤灰(FA)为增强相,烷偶联剂为相容性制备了粉煤灰/废胶粉复合材料。研究了废胶粉和粉煤灰的最佳用量和偶联剂的用量,混合方式和最佳的硫化条件。通过扫描电镜(SEM)和红外光谱(FT-IR)分析了粉煤灰/废胶粉试样的结构和形貌。结果表明:用Si-69对粉煤灰的改性效果好于KH-550。废胶粉最佳用量为100份,粉煤灰40份,Si-69 1.0份。最佳的初混方式为热混,偶联剂先与粉煤灰混合,而后再与废胶粉混合。最佳硫化条件为:温度160℃,压力8MPa,时间25 min。Si-69/FA/URP比KH-550/FA/URP的相容性要好。硅烷偶联剂中的Si—OH和粉煤灰表面的—OH发生脱水缩合,形成了Si—O键;偶联剂的有机端和废胶粉形成了C—H键,从而改善了FA/URP复合材料相容性和力学性能。  相似文献   

11.
武卫莉  蔡金跃 《橡胶工业》2014,61(12):715-719
采用玄武岩短纤维补强硅橡胶,研究玄武岩短纤维/硅橡胶复合材料的性能。结果表明:用丙酮脱玄武岩短纤维表面的浆膜,处理时间为50 min时效果最佳;用偶联剂KH-550对玄武岩短纤维表面进行处理,且玄武岩短纤维用量为20份时,玄武岩短纤维/硅橡胶复合材料的综合性能最佳;制备玄武岩短纤维/硅橡胶复合材料的最佳硫化条件为175℃/10 MPa×25 min。  相似文献   

12.
废玻璃钢粉(WFRPP)经硅烷偶联剂KH550表面处理后,与环氧树脂(EP)共混并热压固化,制备了WFRPP/EP复合材料。研究了WFRPP与EP配比、偶联剂KH550的用量、增韧剂端环氧基液体丁腈橡胶(ET-BN)的用量对复合材料力学性能的影响,并通过电子扫描显微镜观察了复合材料内部的微观结构。结果表明:当WFRPP与EP配比为50∶70、偶联剂质量分数为5%(基于废玻璃钢粉质量)、增韧剂质量分数为12%(基于环氧树脂质量)时,所制备的复合材料综合性能最佳。废玻璃钢粉经适量偶联剂表面处理后,有利于废玻璃钢粉在体系中的均匀分散,并可以使WFRPP/EP复合材料获得较好的两相相容性。此外,ETBN对复合材料具有一定的增韧效果。  相似文献   

13.
制备了玄武岩纤维/玻璃纤维/天然橡胶复合材料,考察了纤维层数、纤维取向、天然橡胶的用量和硅烷偶联剂种类对复合材料性能的影响。结果表明,当玄武岩纤维和玻璃纤维以45°交叉摆放2层、天然橡胶的加入量为50份,采用KH 590作偶联剂时,复合材料的力学性能最佳。与硅烷偶联剂KH 550和Si 69相比,采用KH 590作偶联剂时复合材料的力学性能和热稳定性更好。  相似文献   

14.
以聚乳酸(PLA)和玉米秸秆粉为主要原料,采用溶液浇铸法制备了PLA/玉米秸秆粉复合材料,研究了原料配比、偶联剂类型和用量对PLA/玉米秸秆粉复合材料的化学结构、界面相容性、热稳定性、力学性能和吸水性能的影响。结果表明,复合材料的力学性能随玉米秸秆粉的加入先增后降,当玉米秸秆粉的加入量为20%(质量分数,下同)时,复合材料的性能最佳;硅烷偶联剂(KH550)或钛酸酯的加入明显改善了玉米秸秆粉与PLA的相容性,有助于玉米秸秆粉与PLA的键合,提升了复合材料的力学性能和热稳定性、降低了吸水性能;当KH550的加入量为1.5%或钛酸酯的加入量为3%时,复合材料的综合性能分别达到最佳,且钛酸酯的作用效果明显优于KH550。  相似文献   

15.
采用同一处理条件,分别应用KH550、KH560、KH570、KH792、DL602五种不同种类的偶联剂对玻璃纤维进行处理,与PA6共混制备了玻璃纤维增强尼龙6复合材料(PA6/GF)。考察了偶联剂种类对复合材料力学性能的影响。结果表明,硅烷偶联剂可以附着在玻璃纤维表面,偶联剂处理液种类对处理效果有影响。不同型号的硅烷偶联剂处理后的玻璃纤维制备的复合材料的性能不同,在考察的五种偶联剂中,经过KH550处理的复合材料弹性模量和断裂强度最大。硅烷处理液种类对复合材料的冲击强度影响不大。  相似文献   

16.
以西北地区麦秸秆纤维(WSF)和聚乳酸(PLA)为原料,通过熔融共混的方式加工制备了PLA/WSF复合材料,研究了偶联剂γ—氨丙基三乙氧基硅烷(KH550)对PLA/WSF复合材料的力学性能、吸水性能及界面性能的影响。利用傅里叶变换红外光谱仪(FITR)对改性前后的WSF进行分析,采用扫描电子显微镜(SEM)研究了复合材料拉伸断面的形貌变化。结果表明,KH550与WSF中羟基的反应降低了WSF表面极性;随着WSF含量的增加,PLA/WSF复合材料的力学性能最终呈现下降的趋势;经KH550对WSF改性处理, PLA/WSF复合材料的力学性能得到提升,同时降低了复合材料的吸水性;KH550处理改善了WSF与PLA的界面相容性。  相似文献   

17.
先用硅烷偶联剂KH 550对短切玻璃纤维表面进行有机改性,然后通过机械共混法制备了短切玻璃纤维/丁腈橡胶复合材料,研究了短切玻璃纤维的用量和长度对复合材料耐磨性能及力学性能的影响,并用扫描电子显微镜观察了复合材料的磨损表面。结果表明,短切玻璃纤维在丁腈橡胶基质中的最佳添加质量为15份,长度以6 mm为宜,在此条件下所制备复合材料的耐磨性能及综合力学性能最好,磨损表面最为平整、光滑。  相似文献   

18.
通过一步法制备纳米淀粉/乙烯-乙酸乙烯酯橡胶(EVM)复合材料,研究偶联剂KH570对复合材料性能的影响。结果表明:在不添加偶联剂KH570时,复合材料的物理性能明显提高,但纳米淀粉与EVM基体的相容性较差;偶联剂KH570的加入可以改善纳米淀粉与EVM基体的相容性;随着偶联剂KH570用量的增大,复合材料的硬度、300%定伸应力和拉伸强度逐渐增大;在本试验范围内,偶联剂KH570用量为2份时,复合材料的物理性能最佳。  相似文献   

19.
罗通通  孙玲 《中国塑料》2020,34(11):66-72
以聚乳酸(PLA)和聚己二酸/对苯二甲酸丁二酯(PBAT)为基体,杨木粉(WF)为填充增强材料,使用混炼机熔融共混制备PLA/PBAT/WF复合材料,采用熔融沉积成型(FDM)技术制备标准实验试样,通过扫描电子显微镜、红外光谱分析、旋转流变测试以及力学试验等方法,研究不同含量的硅烷偶联剂KH550对PLA/PBAT共混物以及PLA/PBAT/WF的相容性、流变性及力学性能的影响。结果表明,在偶联剂用量为3 %(质量分数,下同)时,拉伸强度提高了136 %;偶联剂KH550与 PLA和PBAT共价键偶联生成接枝聚合物,二者相容性得到提高;同时偶联剂与WF表面羟基发生缩聚反应有效的改善了其与PLA/PBAT的基体相容性,PLA/PBAT/WF复合材料的FDM的制件力学性能得到较大提升;复合材料的黏度随偶联剂含量的增加呈下降的趋势,含量为3 %时线材的综合打印性能及制品质量最佳。  相似文献   

20.
选用钛酸酯偶联剂NDZ101、NDZ401和硅烷偶联剂KH550、KH570分别对碱式硫酸镁晶须进行预处理,采用模压工艺制备不饱和聚酯树脂/苎麻布/碱式硫酸镁晶须复合材料,研究了偶联剂加入比例对复合材料力学性能的影响。结果表明:除了KH570外,其他几种偶联剂均可保持或提高复合材料的拉伸强度和冲击强度;除了NDZ101之外,其他几种偶联剂均可提高复合材料的弯曲强度,当选用2%的KH550进行处理时,复合材料的弯曲强度最高,达到104.78 MPa,较未经偶联剂处理的复合材料的弯曲强度(95.18 MPa)提高了10.09%;利用硅烷类偶联剂处理晶须,对复合材料的拉伸模量、弯曲模量的改善效果优于钛酸酯类偶联剂;偶联剂处理不能改变复合材料脆性断裂的性质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号