首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 368 毫秒
1.
Oil displacement tests in water wet Berea sandstone cores containing residual crude oil flooded with water have shown that high tertiary oil recoveries can be obtained using the sodium salts of readily available carboxylic acids. Using a 10% pore volume surfactant slug containing 3.0% sodium isostearate and 3.0% isopentyl alcohol followed by a polyacrylamide mobility buffer resulted in a 92% tertiary oil recovery, which compares well with recoveries using petroleum solfonates. Oil recoveries were highly dependent on pH and added base. Aliphatic C18 carboxylates gave higher recoveries at lower pH using sodium bicarbonate as the added base (pH 8.5) rather than sodium hydroxide, sodium carbonate or sodium orthosilicate (pH 11–13). In contrast, aromatic carboxylates e.g., sodium p-(1-pentylnonyl)benzoate, gave higher recoveries at higher pH using sodium carbonate rather than sodium bicarbonate. Carboxylates with branched alkyl groups, e.g., isostearate, gave higher tertiary oil recoveries than unbranched carboxylates, e.g., oleate or stearate. Low cost tall oils and tall-oil fatty acids, when neutralized with base, gave oil recoveries of 60–80%. Carboxylates were found to give good oil recoveries even when significant amounts of calcium ion were present.  相似文献   

2.
Micelles composed of mixed surfactants with different structures (mixed micelles) are of great theoretical and industrial interest. This work pertains tomaximizing interfacial tension (IFT) reduction via surfactant pairs. In this respect, four types of fatty acid amides based on lauric, myristic, palmitic, and stearic acids were blended with dodecyl benzene sulfonic acid at a molar ratio of 4∶1 and designated as A1, A2, A3, and A4, respectively. The IFT was measured for each blend at different concentrations using Badri crude oil. The most potent formula (A4) was evaluated for using in enhanced oil recovery (EOR). The IFT was tested in the presence of different electrolyte concentrations with different crude oils at different temperatures. Finally several runs were devoted to study the displacement of Badri crude oil by A4 surfactant solution using different slug sizes of 10, 20, and 40% of pore volume (PV). The study reveled that Badri crude oil gave ultra-low IFT at lowest surfactant concentration and 0.5% of NaCl. The recovery factor at a slug size of 20% PV was 83% of original oil in place compared with 59% in case of conventional water flood.  相似文献   

3.
The main purpose of this work was to evaluate surfactant systems in terms of viscosities and retention levels in Berea sandstone and in terms of their oil displacement efficiencies. Commercially available surfactants can act as effective cosurfactants to petroleum sulfonates in high salinity and high hardness environments. Such systems can achieve the ultralow interfacial tensions required for effective tertiary oil recovery. The two cosurfactants producing effective systems distribute between the phases in such a way that one is between the upper and middle phases, and the other is between the middle and lower phases. The cosurfactant material increases the excess phase uptake into the microemulsion-rich phase which is opposite to the behavior of alcohols used in low salinity formulations. Tertiary oil in Berea sandstone is recoverable by such surfactant systems in high salinity and high hardness environments. The chromatographic separation of surfactant species has been observed. Retention levels are quite high and must be reduced substantially before these systems can be commercialized.  相似文献   

4.
Low interfacial tension (IFT) drainage and imbibition are effective methods for improving oil recovery from reservoirs that have low levels of oil or are tight (i.e., exhibit low oil permeability). It is critical to prepare a high efficient imbibition formula. In this work, a novel 2,4,6-tris(1-phenylethyl)phenoxy polyoxyethylene ether hydroxypropyl sodium sulfonate (TPHS) surfactant was synthesized and evaluated for imbibition. Its structure was confirmed by Fourier transform infrared spectroscopy and the interfacial tension (IFT) of the crude oil/0.07% TPHS solution was 0.276 mN/m. When 0.1 wt% TPHS was mixed with 0.2 wt% alpha olefin sulfonate (AOS), the IFT was lowered to 6 × 10−2 mN/m. The synergy between nanoparticles (NPs) and TPHS/AOS mixed surfactant was studied by IFT, contact angle on sandstone substrates, zeta potential, and spreading dynamics through microscopic methods. The results show that the surfactant likely adsorbs to the NP surface and that NP addition can help the surfactant desorb crude oil from the glass surface. With the addition of 0.05 wt% SiO2 NPs (SNPs), the imbibition oil recovery rate increased dramatically from 0.32%/h to 0.87%/h. The spontaneous imbibition recovery increased by 4.47% for original oil in place (OOIP). Compared to flooding by TPHS/AOS surfactant solutions, the oil recovery of forced imbibition in the sand-pack increased by 12.7% OOIP, and the water breakthrough time was delayed by 0.13 pore volumes (PV) when 0.05% SNPs were added. This paper paves the way for enhanced oil recovery in low-permeability sandstone reservoirs using novel TPHS/AOS surfactants and SNPs.  相似文献   

5.
The strength of a newly formulated surfactant with an alkali and polymer (AS/ASP) to improve an acidic heavy oil recovery was laboratory evaluated by various flooding experiments. The comparative role of the parameters like chemical nature, surface wettability, salinity, temperature and injection scheme were explored at high temperature and pressure on Berea sandstone rocks. According to the results the anionic surfactant is capable of providing proper oil displacement under high salinity conditions around 15 wt%. Continuous monitoring of differential pressure response and effluents’ state clearly represented the formation of an emulsified oil in high saline solutions with both alkali and surfactant. Adding sodium metaborate to the surfactant solution reduced the interfacial tension (IFT) to ultra low values and decreased the surfactant emulsion generation capability at higher salinities. Besides, adding Flopaam AN113SH to the chemical slug increased the residual oil removal owing to lower mobility ratios. So, while high capillary number and an emulsion phase were generated by the A/S slug phases, adding polymer could further enhance the performance of these chemicals. On the other hand, chemical flooding through the oil-wet medium resulted in shorter break through time, lower differential pressure, finer emulsion formation, and lower oil recovery in comparison to the similar water-wet cases.  相似文献   

6.
The interfacial behavior of a Wilmington crude oil was studied as part of our investigations of enhanced oil recovery by weakly alkaline solutions. For some systems, the spinning drop apparatus can be used to measure transient interfacial tension (IFT) effects, coalescence times of oil drops, and film rigidity simultaneously, for rapid screening of chemical slug composition for the potential of improving oil recovery by the mechanisms of oil mobilization and oil bank formation. The experimental results presented include the effects of temperature, surface age, salinity, added surfactant, and polymer on coalescence time, film rigidity, and IFT behavior. Oil displacement tests were performed using surfactant-enhanced bicarbonate solutions formulated for improved mobility control and for improved oil mobilization and oil drop coalescence.

The most significant result of this work was that we were able to measure the dynamics in IFT between 2 coalescing oil drops as perturbations in the equilibrium concentration of surfactant at the interface occurred during film drainage. The accuracy of the technique for measuring IFT and film rigidity improved as the contact radii between the oil drops increased.  相似文献   

7.
以不含酸性物质的脱酸直馏柴油作为油相,研究了NaOH对重烷基苯磺酸盐/油体系界面张力的影响.结果表明,NaOH与原油中的石油酸反应生成自表面活性剂并不是油/水界面张力降低的主控因素.NaOH可以改变重烷基苯磺酸盐体系的最小烷烃碳数,从而影响界面张力,使界面张力达到超值.  相似文献   

8.
The dynamic interfacial tension (IFT) of betaine and betaine/polyether‐nonionic surfactant‐mixed systems against hydrocarbons, kerosene, and crude oil–water was studied using a spinning‐drop tensiometer. The influence of average molecular weight of polyether‐nonionic surfactants on IFT of mixed solutions was investigated. On the basis of the experimental results, one can find that it is difficult to reach the ultralow IFT value for betaine solution against hydrocarbon and kerosene because of the mismatch between the hydrophobic and hydrophilic groups. After purification, kerosene still contains a small amount of carboxyl groups, which can exert a synergistic effect on surfactants resulting in a lower IFT. The IFT of betaine and mixtures against Daqing crude oil can reach an ultralow value because of the mixed adsorption of surfactant and petroleum soap molecules. For mixed solutions, with the increasing concentration of added polyether, the decrease of petroleum soaps at the oil–water interface results in the destruction of synergistic effects.  相似文献   

9.
石油磺酸盐是一种以石油馏分为原料的合成阴离子表面活性剂,主要用作驱油剂,具有界面活性强,与原油配伍性好以及水溶性好等优点,一直受到广泛重视。石油磺酸盐因原料油组分及分子结构复杂,结构和性能差异大,使得三次采油应用的表面活性剂应满足低界面张力和低吸附量才能达到提高采收率的目的,故开发具有高界面活性和低吸附损失的石油磺酸盐具有重要意义。  相似文献   

10.
在我国石油工业,一次、二次采油对原油的采取率仅约40%。由于石油是不可再生资源,所以为了不造成浪费就不得不进行三次采油,而石油磺酸盐则是三次采油过程中常用的驱油剂,其制备工艺因选择的磺化剂不同而不同,作者则主要对以三氧化硫磺化制备石油磺酸盐的工艺和现在常用石油磺酸盐组成分析方法进行了综述与简要分析。  相似文献   

11.
In this research, a star‐shaped surfactant was synthesized through the chlorination reaction, alkylation reaction and sulfonation reaction of triethanolamine, which is composed of three hydrophobic chains and three sulfonate hydrophilic groups. The critical micelle concentration (CMC) of the surfactant was measured by the surface tension method, and the results showed that it had high surface activity with CMC of 5.53 × 10?5 mol/L. The surfactant was superior in surface active properties to the reference surfactants SDBS and DADS‐C12. The interfacial tension (IFT) of the studied crude oil–water system (surfactant concentration 0.1 g/L, NaOH concentration 0.5 g/L, and experimental temperature 50 °C) dropped to 1.1 × 10?4 mN/m, which can fulfil the requirement of surfactants for oil displacement. An aqueous solution of the surfactant and crude oil was emulsified by shaking, which formed a highly stable oil‐in‐water (O/W) emulsion with particle size of 5–20 μm. The oil displacement effect was almost 12%.  相似文献   

12.
The influence of petroleum sulphonate (TRS) on interfacial properties and stability of the emulsions formed by formation water and asphaltene, resin and crude model oils from Gudong crude oil was investigated by measurement of interfacial shear viscosity, interfacial tension (IFT) and emulsion stability. With increasing petroleum sulphonate concentration, IFT between the formation water and the asphaltene, resin and crude model oils decreases significantly. The interfacial shear viscosity and emulsion stability of asphaltene and crude model oil system increase for the petroleum sulphonate concentration in the range 0.1% to 0.3%, and decrease slightly when the concentration of the surfactant is 0.5%. There exists a close correlation between the interfacial shear viscosity and the stability of the emulsions formed by asphaltene or crude model oils and petroleum sulphonate solution. The stability of the emulsions is determined by the strength of the interfacial film formed of petroleum sulphonate molecules and the natural interfacial active components in the asphaltene fraction and the crude oil. The asphaltene in the crude oil plays a major role in determining the interfacial properties and the stability of the emulsions.  相似文献   

13.
Injected chemical flooding systems with high salinity tolerance and fast‐dissolving performance are specially required for enhancing oil recovery in offshore oilfields. In this work, a new type of viscoelastic‐surfactant (VES) solution, which meets these criteria, was prepared by simply mixing the zwitterionic surfactant N‐hexadecyl‐N,N‐dimethyl‐3‐ammonio‐1‐propane sulfonate (HDPS) or N‐octyldecyl‐N,N‐dimethyl‐3‐ammonio‐1‐propane sulfonate (ODPS) with anionic surfactants such as sodium dodecyl sulfate (SDS). Various properties of the surfactant system, including viscoelasticity, dissolution properties, reduction of oil/water interfacial tension (IFT), and oil‐displacement efficiency of the mixed surfactant system, have been studied systematically. A rheology study proves that at high salinity, 0.73 wt.% HDPS/SDS‐ and 0.39 wt.% ODPS/SDS‐mixed surfactant systems formed worm‐like micelles with viscosity reaching 42.3 and 23.8 mPa s at a shear rate of 6 s?1, respectively. Additionally, the HDPS/SDS and ODPS/SDS surfactant mixtures also exhibit a fast‐dissolving property (dissolution time <25 min) in brine. More importantly, those surfactant mixtures can significantly reduce the IFT of oil–water interfaces. As an example, the minimum of dynamic‐IFT (IFTmin) could reach 1.17 × 10?2 mN m?1 between the Bohai Oilfield crude oil and 0.39 wt.% ODPS/SDS solution. Another interesting finding is that polyelectrolytes such as sodium of polyepoxysuccinic acid can be used as a regulator for adjusting IFTmin to an ultralow level (<10?2 mN m?1). Taking advantage of the mobility control and reducing the oil/water IFT of those surfactant mixtures, the VES flooding demonstrates excellent oil‐displacement efficiency, which is close to that of polymer/surfactant flooding or polymer/surfactant/alkali flooding. Our work provides a new type of VES flooding system with excellent performances for chemical flooding in offshore oilfields.  相似文献   

14.
无机盐,混合碱NaOH、Na2CO3,阴离子表面活性剂十二烷基苯磺酸钠(LAS)、脂肪醇聚氧乙烯醚硫酸钠(AES),聚合物聚丙烯酰胺(PAM),经过混合组成多元驱。通过实验探讨了该多元驱中各个组分的用量对油水界面张力和稠油黏度的影响,优化了该多元驱中各个组分的含量。实验得出,无机盐的加入可以显著地降低界面张力和稠油黏度。当多元驱中无机盐、混合碱和表面活性剂的质量分数分别为51.87%,40.17%,6.99%,聚合物质量浓度为800 mg/L,配成质量分数为1%的水溶液,加热到50℃,油水质量比7∶3混合后,可使新疆克拉玛依地区红浅稠油黏度从23690 mPa.s降到84.83 mPa.s,降黏率达到99.64%,体系界面张力达到0.07499mN/m。室内评价表明,该多元驱可使新疆克拉玛依地区9#红浅稠油降黏率达到92%。多元驱中无机盐的质量分数超过50%,大大降低了成本。  相似文献   

15.
本文研究了助剂醇种类和含量、磺酸盐和醇总浓度、以及碱类型和含量对中当量石油磺酸盐复合体系界面张力的影响。实验结果表明,如果条件选择合适,中当量石油磺酸盐复合体系可以和大庆原油形成10—3mN/m数量级的超低界面张力。  相似文献   

16.
Surfactant flooding as a potential enhanced oil‐recovery technology in a high‐temperature and high‐salinity oil reservoir after water flooding has attracted extensive attention. In this study, the synthesis of an alkyl alcohol polyoxyethylene ether sulfonate surfactant (C12EO7S) with dodecyl alcohol polyoxyethylene ether and sodium 2‐chloroethanesulfonate monohydrate, and its adaptability in surfactant flooding were investigated. The fundamental parameters of C12EO7S were obtained via surface tension measurement. And the ability to reduce oil–water interfacial tension (IFT), wettability alteration, emulsification, and adsorption was determined. The results illustrated that IFT could be reduced to 10?3 mN m?1 at high temperature and high salinity without additional additives, and C12EO7S exhibited benign wettability alternate ability, and emulsifying ability. Furthermore, the oil‐displacement experiments showed that C12EO7S solution could remarkably enhance oil recovery by 16.19% without adding any additives.  相似文献   

17.
郭亚梅  李明远  贺辉宗  林梅钦 《应用化工》2009,38(9):1300-1303,1306
利用正交实验设计研究了聚合物A、石油磺酸盐B、表面活性剂C三种因素共存时对原油模拟油/水界面剪切粘度的影响。单因素实验表明,表面活性剂C使原油模拟油/水界面粘度降低,而聚合物A的存在则使油/水界面剪切粘度上升。而三种因素共存时,在实验条件下,表面活性剂C对油/水界面剪切粘度有一定的影响,聚合物A和石油磺酸盐B看不出有较大影响。因此,在聚合物-表面活性剂复合驱体系中,界面剪切粘度的变化主要取决于体系中表面活性剂的变化。  相似文献   

18.
超低界面张力石油磺酸盐复配驱油剂研究   总被引:1,自引:0,他引:1  
通过室内实验研究了溶液质量分数、矿化度对石油磺酸盐溶液与大庆L区块原油的界面张力的影响,并将不同类型表面活性剂分别与石油磺酸盐复配,筛选出能够使油/水界面张力降至超低(10-3 mN/m数量级)的最优增效组合,以取代ASP复合驱中所加的碱.实验结果表明,在矿化度为6 000~10 000 mg/L,钙、镁离子质量浓度不超过20 mg/L时,石油磺酸盐表面活性剂有良好的抗盐性,可使油/水界面张力达到超低.在实验所选的不同类型表面活性剂中,石油磺酸盐与甜菜碱型表面活性剂复配起到明显的增效作用,特别是与椰油酰丙基磺基甜菜碱复配增效作用尤为显著,且两者复配的浓度范围较宽,油/水界面张力易达到超低.  相似文献   

19.
叶志刚  占昌朝 《广东化工》2012,39(2):157-158
文章研究了重烷基苯磺酸盐(HABS)/QK-25原油间的界面张力(IFT)。探讨了HABS种类、复配比例和浓度,醇种类和含量,Na2CO3含量和非离子表面活性剂TX-10含量对IFT的影响。结果表明,当金桐2#/南京1#=5∶5时,体系界面张力最低;最优醇类为正丁醇,但醇种类和含量对界面张力影响不显著;TX-10含量、Na2CO3含量和HABS浓度对体系界面张力的影响依次减小。  相似文献   

20.
Residual oil displacement and surfactant retention were measured in Berea cores with well-characterized surfactant systems; phase and interfacial tension behavior was determined as well. The results, interpreted in terms of what is known about the different surfactant-rich microstructures present in aqueous sodium 4-(l'-heptylnonyl) benzenesulfonate (SHBS) alone or in conjunction with the co-surfactant sodium dodecylsulfate (SDS) or the co-solvent n-butanol (NBA), indicate that the large retention by Berea rock of liquid crystalline dispersions can be greatly reduced by sonicating them to produce tiny vesicles or by adding a suitable co-solvent or co-surfactant to dissolve the liquid crystallites.

The core tests show that high oil recovery with low retention can be achieved by injecting isotropic solutions of alcohol-solubilized surfactant or ultradispersions of vesicles, although the former performed better than the latter. These are able to form, in situ upon contact with residual oil, a surfactant-rich third phase with low interfacial tensions against both aqueous and oleic phases so that it can mobilize the oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号