首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
程晓琪  许戈文 《精细化工》2020,37(1):117-121,167
以天然蚕丝为骨架支撑材料,将聚氧化乙烯(PEO)和锂盐溶液浇铸在蚕丝上干燥成膜,制备得到蚕丝/PEO复合固态聚合物电解质(Silk-PEO-SPE)。通过FTIR、电子拉力机、同步热分析仪、电化学窗口测试、电导率测试对固态聚合物电解质进行了结构和性能表征,并以磷酸铁锂为正极,金属锂为负极组装全固态电池,测试了电池的充放电性能。结果表明,与传统PEO固态聚合物电解质相比,复合固态聚合物具有较好的机械强度(达到10 MPa)和优异的电化学窗口(达到4.6 V),以该电解质组装的全固态锂电池在60℃、1 C电流密度下放电比容量达到113 mA·h/g,循环100次容量保持率达到97%,显示出较优异的循环稳定性。  相似文献   

2.
采用Pechini法制备了钠超离子导体(NASCION)型Li1.4Al0.4Ti1.6(PO4)3(LATP)固态电解质,并将其应用于锂氧电池。通过XRD以及SEM表征了LATP的结构及形貌。结果显示:所制备的LATP电解质晶粒粒径均匀,致密度高。使用电化学阻抗谱评价了LATP固态电解质的离子电导率,并通过充放电测试考察了使用固态电解质的锂氧电池的充放电性能。结果表明:所制备的LATP具有较高的锂离子电导率,30℃时LATP的离子电导率为1.1×10–4 S/cm;LATP可以有效地降低锂氧电池在放电及充电过程中的副反应,提高锂氧电池的充放电循环性能。  相似文献   

3.
以Fe(Ⅲ)/Fe(Ⅱ)为正极电解液的氧化还原电池,用循环伏安、交流阻抗、充放电等方法研究了在硫酸体系中的电化学行为.结果显示,Fe(Ⅲ)/Fe(Ⅱ)反应是准可逆过程,当硫酸的浓度为0.50 mol/L时,峰电流最大,Fe(Ⅱ)扩散系数Dc为2.276×10-6 cm2/s;在0.37 V下的电化学极化阻抗为2.238 Ω/cm2;与锌溶液组成电池,在20 mA/cm2进行循环充放电,充电电压在1.65 ~1.72 V,放电电压在1.11~1.25 V,电流效率为80%~97%,电压效率为65% ~75%,能持续稳定循环110次.  相似文献   

4.
以Fe(Ⅲ)/Fe(Ⅱ)为正极电解液的氧化还原电池,用循环伏安、交流阻抗、充放电等方法研究了在硫酸体系中的电化学行为。结果显示,Fe(Ⅲ)/Fe(Ⅱ)反应是准可逆过程,当硫酸的浓度为0.50 mol/L时,峰电流最大,Fe(Ⅱ)扩散系数Dc为2.276×10-6cm2/s;在0.37 V下的电化学极化阻抗为2.238Ω/cm2;与锌溶液组成电池,在20 mA/cm2进行循环充放电,充电电压在1.65~1.72 V,放电电压在1.11~1.25 V,电流效率为80%~97%,电压效率为65%~75%,能持续稳定循环110次。  相似文献   

5.
采用细菌纤维素(BC)、聚乙烯醇(PVA)为原料,通过3D打印与冻融循环法制备超拉伸凝胶电解质。采用SEM、接触角测量、XRD、EIS和拉伸测试对凝胶电解质物理特性、电化学性能及拉伸性能进行表征。实验结果表明,当m(BC)∶m(PVA)=0.6∶1时,基于3D打印制备的凝胶电解质具有稳定的三维网络结构、优异的拉伸性能和电化学性能,拉伸强度可达0.9 MPa、断裂伸长率可达961%、离子电导率为1.10×10-1 S/cm。将该凝胶电解质应用于柔性铝空气电池,功率密度可达21 mW/cm2,电流密度为20 mA/cm2时,铝阳极比容量为1124 mA?h/g,电池可稳定放电90 min。  相似文献   

6.
采用化学氧化聚合法合成了以碳为载体的钴-聚吡咯(PPy)配合物Co-PPy-C,作为气体扩散电极的氧还原催化剂。利用极化曲线、交流阻抗、计时电流等电化学方法测试了其在碱性介质中(6 mol/L KOH)氧气气氛条件下氧还原的催化性能。电极电位在-0.20 V vs.Hg/HgO时,催化剂电流密度达到158 mA/cm2,显示出优越的氧还原电催化性能;采取催化层/集流体/气体扩散层的排布方式,以纯锌为负极,6 mol/L的KOH为电解液,将气体扩散电极与锌负极组装成锌-空气电池。电池以80 mA/cm2进行恒流放电,放电电压为1.0 V,且性能稳定。  相似文献   

7.
并流沉淀法合成氧化镍及其电容性能   总被引:1,自引:1,他引:0  
陈野  刘良  张尊波  向琪 《精细化工》2008,25(5):424-427
以硝酸镍和碳酸铵为原料,采用并流沉淀法得到碱式碳酸镍前驱体,经300℃热处理后得到NiO。X射线衍射分析表明,其衍射峰位置分别为37.2°、43.2°和62.8°,与标准图谱比照,所制样品为立方相的NiO。按m(NiO):m(乙炔黑):m(聚四氟乙烯)=75:15:10制备电极材料,在电解液c(KOH)=5mol.L-1的三电极体系中,通过循环伏安、交流阻抗和恒流充放电对其超级电容性能进行了考察。不同扫速循环伏安曲线表明,该材料具有典型的超级电容特性;交流阻抗测试结果表明,溶液电阻RL为0.5Ω,电极电阻RE为0.6Ω;在电位为0~0.4V,10mA.cm-2恒流充放电条件下,测得其放电比容量可达352.7F.g-1。经12mA.cm-2恒电流循环100次,其放电效率仍达97.5%。  相似文献   

8.
摘要:以聚己二酸-1,4-丁二醇酯二醇( PBA) 、六亚甲基二异氰酸酯( HDI)和阻燃剂N,N阻双(2(羟乙基)胺基亚甲基磷酸二乙酯( FCR-6)为主要原料合成阻燃聚氨酯(TPUP),将阻燃聚氨酯与锂盐复合得到阻燃聚氨酯基固态聚合物电解质。采用红外光谱、热重分析、锥形量热、力学测试、电化学窗口、电导率和电池的充放电性能测试等对阻燃聚氨酯基固态聚合物电解质进行了表征和性能测试。研究表明,TPUP具有良好阻燃性能,制备的阻燃电解质TPUP25%Li综合性能最佳,且拉伸强度达到2.09MPa,80℃时离子电导率为3.09M10-4 S/cm,以阻燃电解质组装的全固态锂电池,在80℃时0.2C电流密度下放电容量达到159mA?h/g。  相似文献   

9.
以聚己二酸-1,4-丁二醇酯二醇(PBA)、六亚甲基二异氰酸酯(HDI)和N,N-双(2-羟乙基)氨基亚甲基膦酸二乙酯(FCR-6)为主要原料合成阻燃聚氨酯(TPUP),将阻燃聚氨酯与双(三氟甲烷)磺酰亚胺锂(LiTFSI)复合得到一系列锂盐质量分数不同的阻燃聚氨酯基固态聚合物电解质(TPUP10%Li、TPUP20%Li、TPUP25%Li、TPUP30%Li)。采用红外光谱、热重分析、锥形量热、力学测试、电化学窗口、电导率和电池的充放电性能测试等对阻燃聚氨酯基固态聚合物电解质进行了表征和性能测试。结果表明,TPUP具有良好的阻燃性能,制备的阻燃电解质TPUP25%Li综合性能最佳,且拉伸强度达到2.09MPa,80℃时离子电导率为3.09×10–4S/cm,以TPUP25%Li阻燃聚氨酯基固态聚合物电解质组装的全固态锂电池,在80℃时0.2C电流密度下放电容量达到159 mA·h/g。  相似文献   

10.
固相-熔融盐法合成LiNiO2粉体及其电化学性能   总被引:3,自引:0,他引:3  
用固相法与熔融盐法相结合的新工艺,制备了锂离子电池正极材料LiNiO2.在空气中,对LiNO3 LiOH的熔融盐混合物和Ni(OH)2的混合粉体进行了差热-热重分析,研究了时间、生长后热处理等因素对产物结构的影响.x射线衍射分析表明:制得的LiNiO2具有a-NaFeO2结构且晶型完整.电性能测试表明:在0.5 mA/cm2的充放电电流密度和2.7~4.2 V的电压范围内,放电比容量可达150.2(mA·h)/g,Coulomb效率达82.9%,循环20次后,放电比容量仍达126.6(mA·h)/g.结果表明:采用此工艺,能制备出电化学性能良好的LiNiO2正极材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号