首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wave conversion materials with high thermal conductivity are necessary for high-power semiconductor lighting. Ceramics have higher thermal conductivity than existing matrices such as resin or glass in which phosphor particles are dispersed. However, the high densification of ceramics generally requires high-temperature sintering, which degrades and alters the phosphor particles. In this study, we aimed to achieve the high densification of MgO ceramics at room temperature. Applying high hydrostatic pressure with water addition improved the sample packing ratio and promoted the formation of Mg(OH)2. As a result, the relative density was ≥95%. Additionally, various nitride phosphor particles (CaAlSiN3:Eu2+, β-SiAlON:Eu2+, and α-SiAlON:Eu2+) were dispersed in the MgO matrix at room temperature without degrading the luminescence property. The thermal conductivity of the obtained sample was about 8 W m?1K?1, 40 times higher than that of the epoxy matrix.  相似文献   

2.
The characteristics of Lu2O3-doped ZrO2 as a solid electrolyte material were investigated in terms of its oxygen ion conductivity and flexural strength to realize its electrolytic function at intermediate and high temperatures. The effect of doping Lu3+, which has a high nuclear charge electric field strength, was examined through impedance spectroscopy, open-circuit potential measurements, and bending tests. The results with Lu2O3 dopant were compared with those obtained with a widely used dopant, Y3+, having a similar ionic radius with Lu3+, as well as a dopant that provides high ionic conduction, Sc3+, having a smaller ionic radius with Zr4+. The results revealed that, at the same dopant concentration, both the ionic conductivity and the flexural strength of Lu2O3-doped ZrO2 are higher than those of the widely used Y2O3-doped ZrO2. The conductivity of 8 mol% Lu2O3-doped ZrO2 surpassed that of 8 mol% Sc2O3-doped ZrO2 in the range of 800–950 °C (0.153 S/cm vs. 0.121 S/cm at 900 °C). These results indicate the potential of Lu3+ as a dopant for enhancing the performance of ZrO2 solid electrolytes.  相似文献   

3.
《Ceramics International》2020,46(13):21156-21165
To improve the thermal and mechanical properties of Al2O3/AlN composite ceramics, a novel heterogeneous precipitation coating (HPC) approach was introduced into the fabrication of Al2O3/AlN ceramics. For this approach, Al2O3 and AlN powders were coated with a layer of amorphous Y2O3, with the coated Al2O3 and AlN powders found to favor the formation of an interconnected YAG second phase along the grain boundaries. The interconnected YAG phase was designed to act as a diffusion barrier layer to minimize the detrimental interdiffusion between Al2O3 and AlN particles. Compared with samples prepared by a conventional ball-milling method, the HPC Al2O3/AlN composites exhibited less AlON formation, a higher relative density, a smaller grain size and a more homogeneous microstructure. The thermal conductivity, bending strength, fracture toughness and Weibull modulus of the HPC Al2O3/AlN composite ceramics were found to reach 34.21 ± 0.34 W m−1 K−1, 475.61 ± 21.56 MPa, 5.53 ± 0.29 MPa m1/2 and 25.61, respectively, which are much higher than those for the Al2O3 and Al2O3/AlN samples prepared by the conventional ball-milling method. These results suggest that HPC is a more effective technique for preparing Al2O3/AlN composites with enhanced thermal and mechanical properties, and is probably applicable to other composite material systems as well.  相似文献   

4.
《Ceramics International》2021,47(19):27324-27333
In order to reduce the difficulty of preparing binder-less cemented carbide and further broaden its application prospects, tungsten carbide toughened by in situ elongated β-Sialon grains was developed via sintering ball-milled WC and α-Si3N4 powders using Al2O3–ZrO2 as a sintering aid and transformation additive. The two-step spark plasma sintering of the mixture at 1650 °C with dwelling at 1500 °C for 10 min was conducted under 30 MPa uniaxial pressure, and the densification behaviors, phase transformations, mechanical properties, and microstructures of the produced composites were investigated. The addition of Al2O3–ZrO2 reduced the initial temperature of the densification process by approximately 100 °C and its final temperature by 200 °C (compared with the densification temperatures of pure WC and Si3N4 materials) and fully transformed α-Si3N4 to Sialon (Si–Al–O–N) phases. Microstructural characterization data showed that the WC matrix contained homogeneously distributed equiaxed and elongated β-Si5AlON7 grains. The WC composites containing in situ elongated β-Sialon grains exhibited an optimal hardness of 18.93 ± 0.03 GPa and enhanced fracture toughness of 10.43 ± 0.27 MPa m1/2. The toughening mechanism of the β-Sialon phase involved the pull-out of elongated grains and crack bridging.  相似文献   

5.
《Ceramics International》2021,47(21):30043-30050
We report the fabrication of dense single-phase (Ta,Hf)CN carbonitride ceramics using a combination of combustion synthesis (CS) and spark plasma sintering (SPS). The ceramic powder was produced by high-energy ball milling of the reactants (Ta, Hf, C) in different atomic ratios followed by CS of the obtained nanostructured composites in a nitrogen atmosphere. X-ray diffraction analysis of the combustion products revealed the formation of (Ta,Hf)CN with cubic B1 structures as the dominant phases for all investigated compositions. The SPS of the as-synthesized powders allowed both homogenization of the composition and consolidation of the bulk single-phase carbonitride ceramics with a relative density of 98 ± 1 %. Ta25Hf75CN showed the highest hardness (19.4 ± 0.2 GPa) and fracture toughness (5.4 ± 0.4 MPa m1/2) among the investigated composites and excellent oxidation resistance in air.  相似文献   

6.
《Ceramics International》2022,48(15):21299-21304
A SrY2O4 microwave dielectric ceramic suitable for 5G systems is synthesised via a solid-state reaction in a sintering temperature range of 1425–1525 °C. X-ray diffraction patterns and Rietveld refinement analysis show that the ceramic has an antispinel orthorhombic crystal structure belonging to the Pnma space group. Scanning electron microscopy images show that the ceramic particles are closely connected, the grain boundaries are clear, and the particles are uniform at the optimal sintering temperature of 1475 °C. The optimal microwave dielectric performances are εr = 14.78, Q × f = 84090 GHz, τ? = ?14.98 ppm/°C. The relatively low dielectric constant, high Q × f value, low τ? value, and easily available raw materials indicate that it is a good choice for 5G equipment.  相似文献   

7.
Because they have a high application potential in the thermal management of insulation environments, high-quality hexagonal boron nitride (h-BN)-based multiphase ceramics have been highly desired. However, so far, their synthesis is still full of challenges. Here, a kind of boron nitride nanosheets (BNNSs)/glass (GS) composite ceramics was prepared by a pressureless sintering method at a lower temperature of 900 °C. Due to a tightly bonded interaction between BNNSs and GS, the formed BNNSs/GS ceramics exhibit excellent multifunction performance. They have an outstanding compressive strength in the range of 19 ∼ 64 MPa and Vickers hardness ranging from 50 to 179 HV. For the BNNSs/GS ceramics with BNNS’s filling fraction of 90 wt%, their maximum side-surface TC values are 12.01 ± 0.18 W m−1 K−1 at 25 °C and 13.64 ± 0.37 W m−1 K−1 at 300 °C, respectively. In the ultra-high frequency range of 26.5 ∼ 40 GHz, the dielectric constant values of the BNNSs/GS ceramics are primarily between 2 and 3, and the corresponding loss tangent values are < 0.3. In addition, based on the remarkable integrity of their structure, these BNNSs/GS ceramics exhibit outstanding thermal-shock stability and prominent thermal management capacity during lots of heating/cooling-testing cycles. Therefore, we believe this kind of BNNSs/GS ceramic system will have great application potential in the new-generation thermal management and/or insulation packaging fields.  相似文献   

8.
In consideration of recycling solid waste to achieve high value-added products, glass-ceramics have been fabricated from municipal solid waste incineration (MSWI) fly ash, pickling sludge (PS), and waste glass (WG) by melting at 1450 °C firstly to achieve parent glass and then crystallizing at 850 °C. Results demonstrated that heavy metals have been well solidified in the prepared glass-ceramics, and relatively/extremely low leaching concentrations of heavy metals have been detected. The synthetic toxicity index of heavy metals has been greatly reduced from 7-18 to <3.2 after crystallization treatment, and the leaching concentrations of Cr, Ni, Zn, Cu, and Pb are 0.15, 0.05, 0.26, 0.12, 0.19 mg L-1 respectively. Chemical morphology analysis, principal component analysis, TEM and EPMA were utilized to clarify the migration, transformation, and solidification mechanism of heavy metals from the as-received solid wastes. The major heavy metals, Cr and Ni which is responsible for the most toxicity, mainly exist in form of the oxidation state and residual state in parent glass, while the residual state in the glass-ceramics. The solidification performance was mostly positively correlated with the form of residue state, which the stability of heavy metals in glass-ceramics is improved. The solidification mechanism of heavy metals in glass-ceramics could be explained by the combination of chemical solidification/stabilization and physical coating. The TEM and EPMA confirmed that Cr and Ni mainly exist in the spinel crystalline (NiCr2O4, Fe0.99Ni0.01Fe1.97Cr0.03O4) by solid solution or chemical substitution, and a small amount of Cr in the diopside phase. Pb, Cu, and Zn are homogenously dispersed in the glass-ceramics, which is considered as physical coating solidification.  相似文献   

9.
《Ceramics International》2020,46(5):6146-6153
Uniform, micron-sized SrTiO3 particles do not tend to aggregate, and the low surface area of larger particles can be improved by incorporating porous structures, thus offering superior performance for a range of applications. In this study, submicron-to micron-sized SrTiO3 particles were prepared using hot water or hydrothermal conversion of spherical hydrous titania (TiO2·nH2O) and porous hydrous titania. When spherical hydrous titania particles were employed as the starting material, spherical SrTiO3 particles of hydrous titania were obtained via treatment at 120 °C for 24 h. Similarly, the use of porous hydrous titania particles treated at 90 °C for 48 h resulted in spherical porous SrTiO3 particles with macropores of porous hydrous titania. These porous SrTiO3 particles have a specific surface area of ~115 m2/g, which is one of the largest among micron-sized SrTiO3 particles, thereby making them suitable for use as catalysts or photocatalysts.  相似文献   

10.
Magnesium phosphate cement (MPC) is a potential sustainable alternative to Portland cement. It is possible to lower the total CO2 emissions related to MPC manufacturing by using by-products and wastes as raw materials. When by-products are used to develop MPC, the resultant binder can be referred to as sustainable magnesium phosphate cement (sust-MPC). This research incorporates ceramic, stone, and porcelain waste (CSP) as a filler in sust-MPC to obtain a micromortar. Sust-MPC is formulated with KH2PO4 and low-grade MgO (LG-MgO), a by-product composed of 40–60 wt% MgO. CSP is the non-recyclable glass fraction generated by the glass recycling industry. The effect of water and CSP addition on the mechanical properties of sust-MPC was analyzed using design of experiments (DoE). A statistical model was obtained and validated by testing ideally formulated samples achieved through optimization of the DoE. The optimal formulation (15 wt% of CSP and a water to cement ratio of 0.34) was realized by maximizing the compressive strength at 7 and 28 days of curing, resulting in values of 18 and 25 MPa respectively. After one year of curing, the micromortar was physico-chemically characterized in-depth using backscattered scanning electron microscopy (BSEM-EDS) and Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR). The optimal formulation showed good integration of CSP particles in the ceramic matrix. Thus, a potential reaction between silica and the K-struvite matrix may have occurred after one year of curing.  相似文献   

11.
《Ceramics International》2021,47(19):26808-26821
In this study, the effects of pyrolysis heating rate on microstructural and main mechanical properties of Novalac-based carbon/carbon composites were investigated by CHNS, optical microscope, FE-SEM, BET N2 adsorption, XRD, Raman, FT-IR, wear analyzing, three-point bending test, tensile and Vickers micro-hardness tests. Firstly, PAN-derived carbon nanofibers (reinforcing agent) was synthesized using electrospinning followed by the functionalizing via the wet chemical oxidation to improve the strength of nanofiber bonding to the matrix of composites. Firstly, novalac resin (acting as a matrix), hexamethylenetetramine (hardener agent) and carbon nanofibers (reinforcing agent) were mixed and hot-pressed at 180 °C under the compression load of 40 kN to produce compressed CNFs-Novolac composites. Carbon/Carbon composites were obtained from the pyrolysis of CNFs-Novolac composites up to 1000 °C by the various heating rates under the compression press of 400 bar, finally. Structural and mechanical studies confirmed that the heating rates below or equal to 10 °C.min−1 resulted in the production of low porosity (≤17%) carbon composite with high carbon content (>90 wt%), high fracture strength (≥270 MPa), high toughness (≥9 MPa m1/2), high hardness (≥156 Hv), and low friction coefficient (<0.6).  相似文献   

12.
《Ceramics International》2022,48(22):33485-33498
Additive manufacturing has received tremendous attention in the manufacturing and materials industry in the past three decades. Zirconia-based advanced ceramics have been the subject of substantial interest related to structural and functional ceramics. NanoParticle Jetting (NPJ), a novel material jetting process for selectively depositing nanoparticles, is capable of fabricating dense zirconia components with a highlydetailed surface, precisely controllable shrinkage, and remarkable mechanical properties. The use of NPJ greatly improves the 3D printing process and increases the printing accuracy. An investigation into the performance of NPJ-printed ceramic components evaluated the physical and mechanical properties and microstructure. The experimental results suggested that the NPJ-fabricated ZrO2 cuboids exhibited a high relative density of 99.5%, a glossy surface with minimum roughness of 0.33 μm, a general linear shrinkage factor of 17.47%, acceptable hardness of 12.43 ± 0.09 GPa, outstanding fracture toughness of 7.52 ± 0.34 MPa m1/2, comparable flexural strength of 699 ± 104 MPa, dense grain distribution of the microstructure, and representative features of the fracture. Subsequently, the exclusive printing scheme that achieved these favorable properties was analyzed. The innovative NanoParticle Jetting? system was shown to have significant potential for additive manufacturing.  相似文献   

13.
《Ceramics International》2022,48(10):13748-13753
Thermal management requires an understanding of the relations among the thermal energy transfer, electronic properties, and structures of thermoconductive materials. Here, we enhanced the metal–insulator transition (MIT)-induced effect on the thermal conductivities of microstructure-controlled Ti2O3 composites containing W as a thermal conductive filler at approximately 450 K. To change the electronic and thermal transport properties, we varied the particle radii of the conductive phases in the raw material. The change in the calculated electronic thermal conductivity relative to the electrical conductivity of the Wx(Ti2O3)1?x composite was enhanced by compounding the material. When x was reduced from 50 vol% to 20 vol% and the W particle diameter was reduced from 150 μm to 5 μm, the variation in the estimated electronic thermal conductivity of the Wx(Ti2O3)1?x composite was increased by a factor of 2.01. The total thermal conductivity was also changed by the MIT. At x = 50 vol% and a W particle diameter of 5 μm, the maximum thermal conductivity change was 6.34 times larger than that of pure Ti2O3. The detailed relation between the MIT-induced changes in thermal transport and the microstructure were elucidated in classical effective medium approximations.  相似文献   

14.
Various ceramic materials have been successfully flash sintered via mostly direct current (DC) and some by alternative current (AC). However, a direct comparison on the effects of different field types on the overall microstructure and atomistic defect distribution in flash-sintered ceramics is still very limited. In this work, rutile TiO2 was chosen as a model system to directly compare the effects of DC and AC fields on microstructure and defect distribution. DC flash-sintered TiO2 presents asymmetrical distributions of grain sizes and defects, while AC sintered TiO2 have more homogeneous microstructures. More interestingly, we demonstrated a reverse-polarity flash sintering technique can achieve dense TiO2 bulk samples with homogeneous microstructure and tunable defect gradient, which are previously not attainable from either DC or AC sintering alone. This study shows the importance of field on the microstructures of flash-sintered ceramics and the great potential in achieving dense and uniform microstructures via effective field control process.  相似文献   

15.
LiTa2PO8(LTPO) has low electrolyte density and many pores at grain boundaries, and it is easy to precipitate dielectric phase LiTa3O8 at grain boundaries. The performance can be improved by adding 75Li2O-12.5B2O3-12.5SiO2 (LBS) sintering additive with low melting point during sintering. The effects of LBS addition on the microstructure and grain boundary ionic conductivity of LTPO electrolytes were studied. The results showed that the addition of LBS sintering additives reduced the sintering temperature, improved the density and stability of LTPO electrolyte samples, effectively inhibited the precipitation of LiTa3O8 phase, reduced the grain boundary impedance of samples, and improved the total ionic conductivity of electrolytes. When LBS was added at 0.4 wt%, the relative density of LTPO reached 93.54%, the grain boundary impedance decreased from 1243 Ω to 248.2 Ω, the total ionic conductivity increased from 1.55 × 10−4 S cm−1 to 6.51 × 10−4 S cm−1, and the ionic activation energy was 0.137 eV.  相似文献   

16.
《Ceramics International》2022,48(20):29554-29560
To establish a kinetic model of nitridation of Ti6Al4V in Al2O3-based refractories, the non-isothermal nitridation of Ti6Al4V–Al2O3 composite refractories at various heating rates was investigated using a thermogravimetric (TG) analyzer for large samples. The activation energy (E) and kinetic model (G(α)) for the nitridation of Ti6Al4V were determined using the isoconversional and master plots methods, respectively. The nucleation and growth of nitriding products of the TiN solid solution was the controlling step in the nitridation of Ti6Al4V in Al2O3-based refractories. The Avrami-Erofeev kinetic model, depicted by the G(α) = [-ln (1-α)]4 equation, is the most rational kinetic model. The values of E and A for the nitridation of Ti6Al4V were calculated to be 214.99 kJ/mol and 1.46 × 107 (S?1), respectively.  相似文献   

17.
A major challenge for integration of functional oxides, such as ferroelectrics, into microelectronics and flexible electronics is the reduction of their processing temperature, which needs to be lower than the degradation temperature of silicon and flexible plastic substrates. Aiming that, attention has been given to low-temperature processing of oxide films by chemical solution deposition (CSD). In the field of ferroelectrics, potassium sodium niobate ((K1−xNax)NbO3, KNN) has aroused a special interest due to its eco-friendliness, despite the high crystallization temperature. In this work, polycrystalline KNN thin films have been fabricated for the first time at a temperature as low as 400 °C using a modified CSD process, the Seeded Photosensitive Precursor Method (SPPM). Despite this low processing temperature, monophasic and stoichiometric films with appreciable values of remnant polarization, Pr ∼ 10.8 μC/cm2, and hysteretic piezoresponse are obtained. These results open a window to the direct integration of KNN films into the high-performance electronic devices.  相似文献   

18.
《Ceramics International》2022,48(18):25723-25740
The work was aimed at the investigation of kinetics of Spark Plasma Sintering (SPS) of the α-Al2O3 particles with amorphous surface layers and investigation of the effect of the amorphous layers on the grain growth and on the mechanical properties of alumina. The objects of investigations comprised:(i) submicron α-Al2O3 powder, (ii) submicron α-Al2O3 powder with the amorphous layers on the particles' surfaces, and (iii) the fine-grained α-Al2O3 powder. The submicron powders (i) and (ii) were used to analyze the effect of the amorphous layers on the sintering kinetics. Powders (i) and (iii) were used to analyze the effect of the initial particle sizes on the shrinkage kinetics. The effect of the temperature regime and of the rate (Vh) on the shrinkage kinetics of the submicron and fine alumina powders has been studied. The shrinkage curves were analyzed using the Young–Cutler and Coble models. The sintering kinetics was shown to be determined by the intensity of grain boundary diffusion for the submicron powders and by simultaneous lattice diffusion and grain boundary one for the fine powders. The amorphous layers on the surfaces of the submicron α-Al2O3 particles were found to affect the grain boundary migration rate and the Coble equation parameters at the final stages of SPS. The abnormal characteristics of the alumina ceramics sintered from the submicron powder with the amorphous layers on the particles’ surfaces were suggested to originate from the increased concentration of the defects and of the excess free volume at the grain boundaries formed during crystallization of the amorphous layers.  相似文献   

19.
Ceramic piezoelectric materials have orders of magnitude higher piezoelectric coefficients compared to polymers. However, their brittleness precludes imposition of large strains in mechanical energy harvesting applications. We report here that ice templating affords low bulk modulus lead-free aerogel piezoelectric nanogenerators (PENG) with unprecedented combination of flexibility and high piezoelectric response (voltage and power density). A modified ice templating protocol was used to fabricate piezoelectric nanocomposites of surface modified BaTiO3 (BTO) nanoparticles in crosslinked polyethylene imine. This protocol allowed incorporating a significantly high fraction of BTO particles (up to 83 wt %) in the aerogel, while retaining remarkably high compressibility and elastic recovery up to 80% strain. The output voltage, at an applied compressive force of 20 N (100 kPa), increased with BTO loading and a maximum output voltage of 11.6 V and power density of 7.22 μW/cm2 (49.79 μW/cm3) was obtained for PENG aerogels containing 83 wt% BTO, which is orders of magnitude higher than previously reported values for foam-based piezoelectric energy harvesters. The BTO/PEI PENGs also showed cyclic stability over 900 cycles of deformation. PENGs with higher porosity showed better elastic recovery and piezoelectric properties than lower porosity and higher BTO content aerogels. To the best of our knowledge, this is the first report to demonstrate the piezoelectric properties of high ceramic content aerogels having very high compressibility and elastic recovery.  相似文献   

20.
《Ceramics International》2022,48(13):18257-18269
Thermal barrier coatings (TBCs) are essential to improve the thermal insulation performance of high-temperature components. Rare earth element (Eu3+) doped yttrium stabilized zirconia (YSZ) TBCs have been proved to be an ideal solution for non-destructive testing of internal damages. Based on this theory, two types of coatings deposited by air plasma spray (APS) on Hastelloy-X were investigated: (1) Eu3+ doped YSZ (dopant ratios 1 mol%, 2 mol%, 4 mol%, respectively), (2) traditional undoped 8YSZ. Isothermal oxidation treatment at 1100 °C, in increments of 10h until the failure of the coatings are conducted to evaluate the mechanical properties of different coatings. The microscopic morphology and phase of the coatings were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD) patterns, respectively. The indentation testing methods were used to study the apparent interfacial fracture toughness and the hardness of the ceramic top coat. Results show that the Vickers hardness of the top coat increases with the decrease of porosity in the early stage and then decreases with the heat treatment time increasing in the long-term stage. Simultaneously, compared with the undoped 8YSZ coating, the fracture toughness increased with the dopant of Eu3+ ions increasing, from 1 mol% to 2 mol%, nevertheless, that of 4 mol% Eu3+ doped YSZ decreased compared with in the undoped 8 YSZ. For all types of specimens, the interfacial fracture toughness decreases with the increase of isothermal oxidation time. Results also indicate that the content of Eu3+ doping does not affect the microstructure and interfacial morphology of the YSZ coating as well as the growth law of thermally grown oxides (TGO). Furthermore, EDS detection found that the Eu3+ ions almost do not diffuse inside the TBCs system after isothermal oxidation treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号