首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2021,47(20):28367-28376
An excellent photocatalyst must have narrow band gap value, broad absorption range and high electrical conductivity. The co-precipitation route was followed to synthesize copper substituted manganese ferrite nanoparticles because the co-precipitation is a facile, short and easy to handle method. The nanocomposite of copper substituted manganese ferrite with rGO was synthesized by sonication method. The graphene was used for composite synthesis because of its extraordinary properties such as chemical stability, high transparency, large surface area, high electron transfer ability. Graphene can also improve catalytic acitivity of spinal ferrites. X-ray diffraction (XRD), Raman spectroscopy, and field emission scanning electron microscopy (FESEM) were employed to confirm the structural, spectral and morphological aspects of prepared nanomaterials and their composites with rGO. XRD confirmed face centered cubic (FCC) crystal structure. The appearance of relative broad peaks estimated the formation of nanocrystalline size of synthesized samples. SEM images showed that the nanoparticles have spherical morphology. Furthermore, rGO sheets can be clearly seen in SEM images of composite material. It was investigated that electrical conductivity of MnF2O4 was increased by the substitution of metal cations such as copper. Current – voltage measurements were carried out at room temperature and confirmed the enhanced conductivities of copper doped manganese ferrite and its rGO based nanocomposite. These photocatalysts were used for the degradation of methylene blue (MB) dye and Mn0.9Cu0.1Fe2O4/rGO nanocomposite showed great activity in photocatalysis experiment with 77% degradation efficiency. This increment in photocatalysis was found to be due to synergistic effect of ferrite material and rGO sheets, which increases the electrical conductivity and decreases the photoexcited electrons-holes pair recombination of composite materials.  相似文献   

2.
《Ceramics International》2023,49(8):12408-12414
In the present investigation, nickel oxide nanoparticles (NiO) were biosynthesized utilizing an extract of Clerodendrum phlomidis leaves. Their size, phase study, and shape were investigated using a variety of research methods. In addition, we assessed the photocatalytic effects of NiO nanoparticles on the degradation of methylene blue (MB) and acid blue (AB) dyes. Throughout the research process, we found that these nanoparticles had extraordinary potential for photocatalysis when exposed to UV light. This is a 100% environmentally friendly method that makes no use of any harmful or poisonous solvents. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and ultraviolet–visible spectroscopy (UV–Vis) were used to analyze the biosynthesized NiO nanoparticles. The catalytic activity of the newly synthesized nanoparticles was evaluated by seeing how well they degraded dyes called methylene (MB) and acid blue (AB). Following the first-order reaction, kinetics was the photocatalytic effectiveness against the methylene blue (MB) and acid blue (AB) dyes, both of which exhibited a maximum degradation efficiency of 92% and 63%. Because of this, the biosynthesized NiO nanoparticles synthesized utilizing the extract of Clerodendrum phlomidis leaves have the potential to be used in photocatalytic applications.  相似文献   

3.

This work explores the effect of ternary nanostructure for the enhanced photocatalytic degradation of pollutants and dyes. One-pot solvothermal-assisted approach was used for producing nanosized Pt@TiO2 hybrid nanoparticles (NPs) decorated on reduced graphene oxide (rGO) layers. The microstructure, morphology, chemical composition, and optical absorption of the designed photocatalyst was successfully characterized (using XRD, TEM, Raman, UV–visible absorption spectra, and XPS techniques). The ternary Pt@TiO2-rGO photocatalyst consist of monodisperse quasi-spherical Pt@TiO2 NPs with an average size of 11 nm deposited on the rGO nanosheets. Furthermore, Pt@TiO2-rGO was further investigated for the photodegradation of pesticide and dyes under UV and visible light. The ternary Pt@TiO2-rGO photocatalyst proved a significant improvement on the photodecomposition of pollutants compared to hybrid Pt@TiO2. The Pt@TiO2-rGO photocatalyst was found to show seven- and threefold increase in the photocatalytic activity compared to TiO2 and Pt@TiO2 NPs, respectively which resulted from the high surface area of rGO and as well as the strong Pt/TiO2/rGO interactions which ensured excellent properties of charge separation. On the other hand, the ternary photocatalyst exhibited very good recycle and reuse capacity up to five cycles.

  相似文献   

4.
《Ceramics International》2016,42(14):15747-15755
Zirconium doped nickel cobalt ferrite (ZrxCo0.8−xNi0.2−xFe2O4) nanoparticles and ZrxCo0.8−xNi0.2−xFe2O4-graphene nanocomposites were synthesized by a cheap and facile co-precipitation method. Annealing was done at 750 °C for 6.5 h. Spinel cubic structure of prepared nanoparticles was confirmed by X-ray powder diffraction (XRD) technique. Crystalline size of nanoparticles was observed in the range of 18–27 nm. Graphene was synthesized by Hummer's method. Formation of rGO was confirmed by UV-visible spectroscopy (UV-vis) and XRD. ZrxCo0.8−xNi0.2−xFe2O4-graphene nanocomposites were prepared by ultra-sonication route. Grain size of nanoparticles and dispersion of nanoparticles between rGO layers was determined by Scanning electron microscopy (SEM). In application studies of nanoparticles and their nanocomposites, photocatalytic efficiency of nanoparticles under visible light irradiation was observed by degradation of methylene blue. Charge transfer resistance was measured by electrochemical impedance spectroscopy (EIS) and the variation in dc electrical resistivity was analyzed by room temperature current voltage characteristics (I-V). Dielectric constant was also evaluated in frequency range from 1 MHz to 3 GHz. All these investigations confirmed the possible utilization of these materials for a variety of applications such as visible light photocatalysis, high frequency devices fabrication etc.  相似文献   

5.
《Ceramics International》2019,45(10):12926-12933
The hybrid rGO-TiO2/Co3O4 nanocomposite was successfully synthesized through co-precipitation method. The structural, morphological, compositional and optical properties of the as synthesized nanocomposite were characterized by X-ray diffraction (XRD), Field Emission scanning electron microscopy (FESEM), energy dispersive X-Ray Spectroscopy (EDS), Fourier transformation infrared spectroscopy (FTIR), UV–visible spectrophotometer (UV–vis) and photoluminescence (PL). XRD, EDS and FTIR confirms the existence of rGO-TiO2/Co3O4 in the prepared nanocomposite. FESEM confirms that the TiO2/Co3O4 nanocomposite are adsorbed on the surface of the rGO. UV–Vis and PL spectra revealed that the absorbance and emission occurred at visible region, which greatly supports the photocatalytic dye degradation through the electron-hole separation. The percentage decolorization of methylene blue dye solution was higher with lesser time compared to crystal violet dye. This result concludes that the commercialization of rGO/TiO2/Co3O catalyst may useful for treating various dyes in industries.  相似文献   

6.
NiO nanostructure was synthesized using a simple co-precipitation method and was embedded on reduced graphene oxide surface via ultrasonication. Structural investigations were made through X-ray diffraction (XRD) and functional groups were confirmed by Fourier transform infrared spectroscopy (FTIR). XRD analysis revealed the grain size reduction with doping. Fourier transform infrared spectroscopy confirmed the presence of metal-oxygen bond in pristine and doped NiO nanostructure as well as the presence of carbon containing groups. Scanning electron microscopy (SEM) indicated that the particle size decreased when NiO nanostructure was doped with copper. BET surface area was found to increase almost up to 43 m2/g for Cu doped NiO nanostructure/rGO composite. Current-voltage measurements were performed using two probe method. UV–Visible spectroscopic profiles showed the blue and red shift for Cu doped NiO nanostructure and Cu doped NiO Nanostructure/rGO composite respectively. Rate constant for Cu doped NiO nanostructure/rGO composite found to increase 4.4 times than pristine NiO nanostructure.  相似文献   

7.

A very simple and rapid Direct Injection Flame Synthesis (DIFS) method is effectively used to synthesize pure tin oxide (SnO2) and zinc doped tin oxide (Zn:SnO2) nanoparticles from the metallic tin (Sn) and zinc (Zn) powders for the photocatalytic degradation of methylene blue (MB) dye. The DIFS nanoparticles were characterized using XRD, Raman, UV–Vis, FESEM, PL and EDX studies. The X-ray diffraction analysis indicated that the synthesized SnO2 and Zn:SnO2 nanoparticles have pure tetragonal phases and their average crystallite size decreases when Zn was doped with SnO2. Raman study confirmed the various mode of vibrations and the crystal structure of the synthesized nanoparticles. Purity, atomic percentage and chemical composition were analysed using Energy dispersive X-ray analysis and found to be free from impurities. The band gap energy increases from 3.5 to 3.6 eV upon doping which was revealed from the UV–Visible spectroscopic analysis. Photoluminescence analysis confirms the red shifted emission for Zn:SnO2 due to the oxygen deficiency. The CIE chromaticity (x,y) for SnO2 and Zn:SnO2 was calculated from the emission spectra and the co-ordinates represents blue and violet region respectively. Field Emission Scanning Electron Microscopy analysis showed that the pure SnO2 nanoparticles have irregular, agglomerated, nanoflowered and nanoclustered formation whereas Zn:SnO2 nanoparticles has more crystalline, cubical and nanoflake structure. The photocatalytic activity was enhanced due to the presence of Zn in SnO2 under UV light irradiation. The efficiency of MB degradation by SnO2 was found to be 82% and enhanced to 88% upon doping. Thus the Zn doped SnO2 nanoparticles synthesized by DIFS was found to be an effective photocatalyst than the pure SnO2.

  相似文献   

8.
《Ceramics International》2023,49(10):15507-15526
In present investigation, gCN supported carbon coated Lanthanum doped tungsten oxide (C@LWO/gCN) composite were synthesized via hydrothermal approach. The photodegradation of different cationic dyes like malachite green (MG), crystal violet (CV) and methylene blue (MB) has been carried out under prepared C@LWO/gCN composite. Furthermore, the comparative photodegradation was also performed using pristine LWO and C@LWO nanowires. The synthesized samples were characterized via physiochemical techniques such as XRD, FESEM, EDX, FTIR, BET and UV/Vis spectroscopy. The results proved incorporation of La ions into WO3 lattice and reduced band gap of doped sample which significantly boost up the capability of the material towards photodegradation. The maximum degradation was found out at pH = 6, 5 mg catalyst dose, 5 ppm dye concentration and 35 °C temperature. The achieved results proved that the trapping agents compete with prepared composite specie for the h+, e, HO and O2●- radicals. The obtained experimental records of photodegradation of cationic dyes using C@LWO/gCN composite has correlation with pseudo first order kinetics, Langmuir-Hinshelwood model and t1/2. The simplest facile synthetic approach, remarkable photodegradation performance against colored and colorless effluents suggest that C@LWO/gCN composite exhibit great potential for large-scale wastewater treatment.  相似文献   

9.
Flower-like SnS2 decorated with MgFe2O4 nanoparticles and reduced graphene oxide (rGO) nanosheets were successfully synthesized by a facile solvothermal method. The morphological and crystal structure results confirmed that MgFe2O4 nanospheres were uniformly anchored on the surface of SnS2 flower-like structure with the decoration of rGO nanosheets. The UV–vis diffuse reflectance spectra indicated that the SnS2–MgFe2O4/rGO photocatalyst had a strong visible light absorption. The sample exhibited the highest photocatalytic activity for the degradation of methylene blue under visible light irradiation. The mechanism of improved photocatalytic activity was finally proposed.  相似文献   

10.
Copper(II) oxide (CuO), manganese dioxide (MnO2), and silver (Ag) nanoparticles were synthesized using Kalopanax pictus plant extract. The nanoparticle synthesis was monitored using UV-visible spectra. The occurrence of each peak at 368, 404, and 438 nm wavelength indicated the synthesis of CuO, MnO2, and Ag nanoparticles, respectively. The synthesized nanoparticles were characterized by X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. Catalytic potentials of the synthesized nanoparticles were compared to degrade two typical acidic and basic dyes (Congo red and Safranin O). The degradation ability of MnO2 nanoparticles against Congo red was higher than that of Ag and CuO nanoparticles. All three types of nanoparticles showed a similar degradation ability against Safranin O over 80%. This study demonstrates that biologically synthesized nanoparticles using Kalopanax pictus are good agents for degradation of dyes.  相似文献   

11.
Ce doped ZnO/rGO composite materials were prepared by a one-pot hydrothermal process without any surfactant. The size, crystallography and morphology of the composite were investigated in detail by X- ray diffraction (XRD) studies, Raman spectroscopy, scanning electron microscopic (SEM), transmission electron microscopic (TEM) studies, UV–Vis spectroscopic analysis and X-ray photoelectron spectroscopic (XPS) analysis. The XRD pattern substantiates the formation of Ce doped ZnO/rGO composite revealing the wurtzite structure of ZnO. The SEM micrograph illustrates flower-like morphology for ZnO/rGO composite which coalesced further after cerium incorporation. Additionally, TEM image illustrated that ZnO hexagons were disoriented from its flower structure in Ce/ZnO/rGO composite. The XPS spectra further reaffirm the formation of cerium doped ZnO/rGO composite. The photoluminescence (PL) spectra confirms that emission occurs in the UV and visible region and several active sub-levels were observed in visible region on deconvolution, due to the incorporation of cerium. Antibacterial activity towards B. subtills and V. harveyi affirmed that the incorporation of Ce in ZnO/rGO composite leads to an improved antibacterial activity.  相似文献   

12.
In this research, fabrication and characterization of ultraviolet (UV) detectors based on zinc sulfide–reduced graphene oxide (rGO) nanocomposite with the focus on the wurtzite structure of zinc sulfide was carried out. The nanoparticles of ZnS were synthesized using chemical deposition method and annealed at 500?°C under flow of argon. X-ray diffraction pattern showed that ZnS with the wurtzite phase was formed at 500?°C. Here, rGO as a unique material with similar properties to graphene such as high electron transport was used in order to improve the optical properties of ZnS. For this purpose, rGO was added to ZnS with three different weight percentages of 5, 10 and 15. Scanning electron microscopy showed that ZnS nanoparticles were well placed in rGO sheets. The UV–visible spectra of the synthesized composites showed that with increasing rGO in composite, light absorption is increased. Photoluminescence (PL) spectra also showed that with increasing the percentage of rGO the generation of electron-hole in composite was increased and PL peak was enhanced. The effect of elevated generation of electron-hole pairs was apparent in optoelectrical properties of fabricated UV detectors based on the sample with higher concentration of rGO in composite. For this sample, the response time was decreased to 310 ms, and the sensitivity to UV irradiation was increased by 7.7 times.  相似文献   

13.

Herein, we report the formation of organic composite coating consists of epoxy (EP) reinforced para toluene sulphonic acid (PTSA) doped polypyrrole (PPy)–manganese iron oxide (MnFe2O2) as an efficient corrosion inhibitor for copper substrates. The PTSA doped PPy:MnFe2O2 nanocomposite was synthesized via in situ polymerization of PPy in the presence of MnFe2O2 nanoparticles. Structural features of the prepared samples were characterized through scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), UV–visible spectroscopy and thermogravimetric analysis (TGA). The PTSA doped PPy:MnFe2O2 nanocomposite shows excellent conductivity and improved dielectric performance in comparison to pure PPy. The anti-corrosion performance of this organic composite coating was analyzed through Tafel polarization curves, open circuit potential (OCP), corrosion resistance, impedance spectroscopy and oxygen permeability barrier tests. The nanocomposite coating on copper substrate shows superior corrosion protection efficiency (99%) in comparison to pure epoxy (22%). Adhesion strength of the nanocomposite coating shows significant enhancement due to strong dispersions of MnFe2O2 nanoparticles in the host matrix. Owing to its improved conductivity, excellent anti-corrosion performance along with superior mechanical properties, the organic nanocomposite coating reported in this work can potentially be used to protect the conductive copper surfaces from harsh corrosive environments.

  相似文献   

14.
In this research, novel ternary Ag/αFe2O3-rGO nanocomposites with various contents of GO were synthesized via a facile one-pot hydrothermal method. Ag/αFe2O3-rGO nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectrometer (EDX), photoluminescence (PL) spectroscopy, and Fourier transform infrared (FTIR). The results showed that hematite nanoparticles and Ag nanoparticles were well decorated on the graphene surface. Photocatalytic activity of Ag/αFe2O3-rGO ternary nanocomposites and pure Ag/αFe2O3 was investigated for photodegradation of Congo red dye solution as a model pollutant under UV light irradiation. The ternary nanocomposite with 1.8?mg/ml GO aqueous solution concentration shows higher degradation efficiency under UV light irradiation than the pure Ag/αFe2O3 and the nanocomposites with other GO aqueous solution concentrations. It was observed that the adsorption of the dyes on the nanocomposites surface is dependent on the graphene content due to a decrease in the recombination rate, particles size, and increase charge carrier transfer. The results show that the Ag/αFe2O3-rGO nanocomposite can be used as an excellent photocatalytic material for degradation of Congo red dye in wastewater. A possible photocatalytic mechanism was proposed for degradation of Congo red dye.  相似文献   

15.
《Ceramics International》2022,48(6):7605-7612
In recent work, pure α-Fe2O3 (F-1) and series of 5% Cu doped Fe2O3 (CF-5) , 10% Cu doped Fe2O3 (CF-10) and 15% Cu doped Fe2O3 (CF-15) nanoparticles by facile chemical coprecipitation method were synthesized to study the effect of concentration of doping for photocatalytic activity. As prepared F-1, CF-5, CF-10, CF-15 nanoparticles were subjected to X-ray diffraction (XRD) and Fourier transform infra-red (FTIR) techniques to analyse the structural and functional groups features. These characterization techniques confirmed the successful doping of Cu 2+ ions in α-Fe2O3. The crystallite size of synthesized samples was calculated by Scherrer formula. Gradually decline in crystallite size from 18 to 15 nm was observed for undoped to doped samples. Scanning electron microscopic (SEM) analysis expressed that doping of Cu reduced the aggregation of particles and enhanced the surface area of nanoparticles. UV–Visible spectroscopic analysis of synthesized samples was used to calculate the bandgap energy of F-1, CF-5, CF-10, CF-15 nanoparticles i.e., 2.0, 1.7, 1.5, 1.4eV respectively. Narrowing bandgap energy of doped hematite supported to perform excellent photocatalytic activity. Maximum degradation of methylene blue was recorded via CF-10 within 140 min. Higher degradation rate of methylene blue by optimal concentration of CF-10 is due to effective electron trapping ability of photocatalyst.  相似文献   

16.
Silver and zirconium co‐doped and mono‐doped titania nanocomposites were synthesized and deposited onto polyacrylonitrile fibers via sol–gel dip‐coating method. The resulted coated‐fibers were characterized by X‐ray diffraction (XRD), scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, diffuse reflectance spectroscopy, thermogravimetric analysis, and BET surface area measurement. Photocatalytic activity of the TiO2‐coated and TiO2‐doped coated fibers were determined by photomineralization of methylene blue and Eosin Y under UV–vis light. The progress of photodegradation of dyes was monitored by diffuse reflectance spectroscopy. The XRD results of samples indicate that the TiO2, Ag‐TiO2, Zr‐TiO2, and Ag‐Zr‐TiO2 consist of anatase phase. All samples demonstrated photo‐assisted self‐cleaning properties when exposed to UV–vis irradiation. Evaluated by decomposing dyes, photocatalytic activity of Ag–Zr co‐doped TiO2 coated fiber was obviously higher than that of pure TiO2 and mono‐doped TiO2. Our results showed that the synergistic action between the silver and zirconium species in the Ag‐Zr TiO2 nanocomposite is due to both the structural and electronic properties of the photoactive anatase phase. These results clearly indicate that modification of semiconductor photocatalyst by co‐doping process is an effective method for increasing the photocatalytic activity. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
The present work demonstrates a facile route for preparing LaFeO3/rGO nanocomposites comprising of metal oxide nanoparticles and graphene. Structural, morphology, optical and photocatalytic studies of the samples were characterized using powder X-ray diffraction (XRD), FT-IR, Raman, high resolution scanning electron microscopy (HRSEM), high resolution transmission electron microscope (HRTEM), atomic force microscopy (AFM), thermogravimetry (TGA), X-ray photoelectron spectroscopy, UV–visible and photocatalytic. LaFeO3/rGO nanocomposites believed as an effective photocatalyst for the degradation of methyl orange (MO) dye under visible light irradiation. The inclusion of carbon enhances the light absorption of LaFeO3, resulting in the enhanced photocatalytic activity of the nanocomposite. The degradation of MO dye under visible light source was completely achieved using LaFeO3/rGO as a catalyst.  相似文献   

18.
Superparamagnetic ZnFe2O4/reduced graphene oxide (rGO) composites containing ZnFe2O4 nanoparticles (with ∼5–20 nm sizes) attached onto rGO sheets (with ∼1 μm lateral dimensions) were synthesized by hydrothermal reaction method. By increasing the graphene content of the composite from 0 to 40 wt%, the size as well as the number of the ZnFe2O4 nanoparticles decreased and the saturated magnetization of the composites reduced from 10.2 to 1.8 emu/g, resulting in lower responses to external magnetic fields. Concerning this, the time needed for 90% separation of ZnFe2O4/rGO (40 wt%) composite from its solution (2 mg/mL in ethanol) was found 60 min in the presence of an external magnetic field (∼1 Tesla), while using ZnFe2O4/rGO (15 wt%), only 2 min was required (comparable to the separation time of pure ZnFe2O4 nanoparticles). Correspondingly, the magnetic separation time of 10 μM methyl orange and rhodamine B from aqueous solutions containing 2 mg/mL ZnFe2O4/rGO (15 wt%) was found <6 min, while using the ZnFe2O4/rGO (40 wt%) only 15–20% of the dyes could be separated after 16 min. Although the pure ZnFe2O4 nanoparticles could magnetically separate nearly whole of the dyes from the solutions, the separation time was too longer (>16 min).  相似文献   

19.
An aerochitin–titania (TiO2) composite was successfully synthesized and characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, field emission scanning electron microscopy, and N2 adsorption isotherms. The photocatalytic activity of the composite was investigated on the degradation of the model organic pollutant, methylene blue (MB) dye, under UV irradiation. The aerochitin–TiO2 composite showed excellent adsorptive and photocatalytic activity with a degradation degree of 98% for MB. The first‐order rate constants for the photodegradation MB by TiO2 nanoparticles and aerochitin–TiO2 composite were found to be (3.49 ± 0.04) × 10?3 and (1.82 ± 0.02) × 10?2 min?1. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45908.  相似文献   

20.
《Ceramics International》2019,45(13):16121-16129
Zirconium substituted magnesium cobalt ferrite (ZrxMg0.2-xCo0.8-xFe2O4) nanoparticles and their nano-heterostructures with graphene were synthesized by co-precipitation and ultra-sonication route respectively. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopic (SEM) analysis was done to study the effect of Zr4+ substitution on structural properties, surface morphology, dielectric and current-voltage properties of nanoparticles. The crystallite size of nanoparticles was found in the range of 23–28 nm. XRD pattern analysis confirmed the spinel structure of nanoparticles. Graphene synthesized by modified Hummer's method was utilized as substrate to prepare the heterostructures with ferrite particles. Dispersion of nanoparticles on the surface of rGO sheets was confirmed by SEM analysis. Enhanced photocatalytic activity of nanoparticles and graphene based nano-heterostructures was observed under visible light irradiation. During the current-voltage measurements, decrease in electrical resistivity of nanoparticles was observed. Dielectric measurements were performed within the frequency range 1 MHz–3 GHz. Electrochemical impedance spectroscopy was done to evaluate the kinetic parameters and charge-transfer resistance (Rct) at electrode interface. Enhanced photocatalytic applications, suggested that ZrxMg0.2-xCo0.8-xFe2O4 nanoparticles and graphene based nano-heterostructures can be used for degradation of various organic based pollutants in drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号