首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Yttrium stabilized zirconia (YSZ) used as the state-of-the-art electrolyte for solid oxide fuel cells (SOFCs) requires high temperature (over 800 °C) to realize sufficient oxygen ion conductivity. Thus, the high operational temperature is the main restriction for the commercial process of YSZ-based SOFCs. To obtain decent ionic conductivity at intermediate-low temperatures, Sr-free cathode LaNiO3 is introduced into YSZ to construct a novel LaNiO3-YSZ composite electrolyte, which is sandwiched by two Ni0.8Co0.15Al0.05LiO2-δ (NCAL) electrodes to assemble systematical fuel cells. This device presents an excellent peak output of 1045 mW cm-2 at 600 °C and even 399 mW cm-2 at 450 °C. A series of characterizations indicates that the oxygen ion conductivity of the LaNiO3-YSZ composite is significantly promoted in comparison with that of pure YSZ, and the LaNiO3 component has certain proton conductivity after hydrogenation. Both of the two factors contributes to the superior performance of such devices at intermediate-low temperatures. Furthermore, the sharp decrease in electronic conductivity for LaNiO3 in hydrogen atmosphere combined with Schottky junction at the anode-electrolyte interface eliminates the short-circuiting problem. Our work demonstrates that incorporating Sr-free cathode LaNiO3 into the YSZ electrolyte is an efficient strategy to boost the performance and reduce the operational temperature of YSZ-based SOFCs.  相似文献   

2.
《Ceramics International》2023,49(10):14957-14963
The high-performance single-phase semiconductor materials with higher ionic conductivity have drawn substantial attention in fuel cell applications. Semiconductor materials play a key role to enhance ionic conductivity subsequently promoting low temperature solid oxide fuel cell (LT-SOFC) research. Herein, we proposed a semiconductor Co doped Y2O3 (YCO) samples with different molar ratios, which may easily access the high ionic conductivity and electrochemical performances at low operating temperatures. The resulting fabricated fuel cell 10% Co doped Y2O3 (YCO-10) device exhibits high ionic conductivity of ∼0.16 S cm−1 and a feasible peak power density of 856 mW cm−2 along with 1.09 OCV at 530 °C under H2/air conditions. The electrochemical impedance spectroscopy (EIS) reveals that YCO-10 electrolyte based SOFC device delivers the least ohmic resistance of 0.11–0.16 Ω cm2 at 530-450 °C. Electrode polarization resistance of the constructed fuel cell device noticed from 0.59 Ω cm2 to 0.28 Ω cm2 in H2/air environment at different elevated temperatures (450 °C to 530 °C). This work suggests that YCO-10 can be a promising alternative electrolyte, owing to its high fuel cell performance and enhanced ionic conductivity for LT-SOFC.  相似文献   

3.
In this paper, 4?mol% ZnO-doped Zr0.92Y0.08O2-α (8YSZ) and its 8YSZ+4ZnO/NaCl-KCl composite electrolyte were synthesized by a solid-state reaction. The X–ray diffraction (XRD) analysis indicates that 8YSZ+4ZnO and inorganic chlorides phases can coexist. The inorganic chlorides decrease the synthesis temperature of 8YSZ+4ZnO. The highest conductivities of 8YSZ+4ZnO and 8YSZ+4ZnO-NK are 7.0?×?10?3 S?cm?1 and 7.7?×?10?2 S?cm?1 at 700?°C, respectively. The oxygen concentration discharge cell shows that 8YSZ+4ZnO and 8YSZ+4ZnO-NK are good oxide ionic conductors under an oxygen-containing atmosphere. Finally, an H2/O2 fuel cell based on the 8YSZ+4ZnO-NK electrolyte reached the maximum power density (Pmax) of 315.5?mW?cm?2 at 700?°C.  相似文献   

4.
《Ceramics International》2023,49(2):2174-2182
P-type semiconductor SrZr0.1Mn0.4Mo0.4Y0.1O3-δ (SZMMY) is for the first time composited with n-type ZnO to prepare a solid oxide electrolyte used in fuel cell operable at low temperature. Prepared nanocomposite electrolyte material is considered as a novel material owing to the results obtained in terms of improved ionic conductivity, power density, and current density at lower operational temperature. The material has been analyzed as well crystalline material with a dual-phase as confirmed by X-Ray Diffraction (XRD). The structural morphology of designed electrolyte materials was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), including high-resolution TEM (HR-TEM). The electrochemical impedance spectra (EIS) showed a remarkably lower charge transfer resistance than conventional electrolyte materials. Obtained results illustrated that ionic conductivity increased, which lead to the acceleration of the electrode reactions. Heterostructure nanocomposite SZMMY-ZnO is beneficial to attain a high ionic conductivity due to the suppression of electronic conduction through the p-n junction. The maximum power density was noted as 841 mW cm?2 at 550 °C with a maximum current density of 2287 mA cm?2. Based on optical properties through the p-n junction, the internal electronic current was blocked, which further reduced the short circuit problem in the heterostructure. In addition, the performance and lifetime test indicated good stability of the cell at 550 °C with a very small degradation loss. The present study suggests that the SZMMY-ZnO is a promising electrolyte for low-temperature-SOFCs development.  相似文献   

5.
Using cost-effective fabrication methods to manufacture a high-performance solid oxide fuel cell (SOFC) is helpful to enhance the commercial viability. Here, we report an anode-supported SOFC with a three-layer Gd0.1Ce0.9O1.95 (gadolinia-doped-ceria [GDC])/Y0.148Zr0.852O1.926 (8YSZ)/GDC electrolyte system. The first dense GDC electrolyte is fabricated by co-sintering a thin, screen-printed GDC layer with the anode support (NiO–8YSZ substrate and NiO–GDC anode) at 1400°C for 5 h. Subsequently, two electrolyte layers are deposited via physical vapor deposition. The total electrolyte thickness is less than 5 μm in an area of 5 × 5 cm2, enabling an area-specific ohmic resistance as low as 0.125 Ω cm2 at 500°C (under open circuit voltage), and contributing to a power density as high as 1.2 W cm2 at 650°C (at an operating cell voltage of 0.7 V, using humidified [10 vol.% H2O] H2 as fuel and air as oxidant). This work provides an effective strategy and shows the great potential of using GDC as an electrolyte for high-performance SOFC at intermediate temperature.  相似文献   

6.
Electrophoretic deposition (EPD) of 8 mol% yttria‐stabilized zirconia (YSZ) electrolyte thin film has been carried out onto nonconducting porous NiO‐YSZ cermet anode substrate using a fugitive and electrically conducting polymer interlayer for solid oxide fuel cell (SOFC) application. Such polymer interlayer burnt out during the high‐temperature sintering process (1400°C for 6 h) leaving behind a well adhered, dense, and uniform ceramic YSZ electrolyte film on the top of the porous anode substrate. The EPD kinetics have been studied in depth. It is found that homogeneous and uniform film could be obtained onto the polymer‐coated substrate at an applied voltage of 15 V for 1 min. After the half‐cell (anode + electrolyte) is co‐fired at 1400°C, a suitable cathode composition (La0.65Sr0.3MnO3) thick film paste is screen printed on the top of the sintered YSZ electrolyte. A second stage of sintering of such cathode thick film at 1100°C for 2 h finally yield a single cell SOFC. Such single cell produced a power output of 0.91 W/cm2 at 0.7 V when measured at 800°C using hydrogen and oxygen as fuel and oxidant, respectively.  相似文献   

7.
《Ceramics International》2022,48(18):26476-26486
In this paper, the influence of Bi/Zn mass ratio on the phase composition, microstructure, sintering properties, and electrical properties of Bi/Zn co-added Nd0.2Ce0.8O1.9 (NDC) used for intermediate-temperature solid oxide fuel cells (SOFCs) was investigated. At 700 °C, the total conductivity of the NDC-based electrolyte (3Bi/1Zn-NDC) with the mass ratio 3:1 for Bi2O3 and ZnO was as high as 5.89 × 10?2 S cm?1, 4.60 and 4.51 times higher than the single addition of 4 wt% Bi2O3 and 4 wt% ZnO, respectively. In addition, the 3Bi/1Zn-NDC electrolyte exhibited a good physical and chemical compatibility with the electrode materials. The open circuit voltage (OCV) of the cell supported by the 3Bi/1Zn-NDC electrolyte was 0.67 V, and the output power density could reach 402.25 mW cm?2 at 700 °C. It showed stable power output and OCV in the long-term stability test within 50 h. Overall, the combination of 3 wt% Bi2O3 and 1 wt% ZnO was a very effective dual sintering aid for NDC electrolyte.  相似文献   

8.
《Ceramics International》2022,48(2):2031-2037
Structural design/doping strategy is an efficient method to prepare electrolytes with high oxygen ionic conductivity, but there is still hindrance for solid oxide fuel cell (SOFC) commercialization. Recent advances in semiconductor ionic materials have developed a novel strategy in designing low-temperature electrolyte materials. Here, a heterostructure composite of LSFC (La0.6Sr0.4Fe0.8Cu0.2O3-δ) and SDC (Sm0.2Ce0.8O2?δ) is developed. The LSFC-SDC composite exhibits a high ionic conductivity, >0.1S/cm at 550 °C. With symmetrical NCAL (Ni0.8Co0.15Al0.05LiO2-δ)-coated electrode, cells with SDC-LSFC electrolyte exhibit high open-circuit voltage (OCV), and achieve a significant power improvement (>1000 mW/cm2) compared with pure SDC electrolyte at 550 °C. The short-term stability result has proven the operating ability of SDC-LSFC electrolyte under fuel cell environment (H2/air). This work demonstrates a new developing route of low-temperature solid oxide fuel cell (LTSOFC), which is different from the conventional SOFC.  相似文献   

9.
The Cu-doped titania (Ti0.95Cu0.05O2-δ) is studied here as a solid-state ionic conductor for its possible application in high temperature energy devices such as an electrolyte for SOFC. The sample in the powder form was obtained by solid state method using TiO2 and copper acetate by heating up to 1200 °C for 10 h. It was characterized by XRD, FT-IR, Raman, SEM/EDS, DRS-UV-Visible, photoluminescence, BET and ac-impedance techniques. The oxide ion conductivity (σt) values obtained from ac-impedance measurements showed a linear increase with temperature from 300 ? 700 °C. The σt values are similar to that of Ln-doped ceria, and the highest conductivity of 1.41 × 10?4 Scm?1 was recorded at 700°C. The activation energy for total conductivity was found to be 0.82 eV. The ionic and electronic transport numbers are 0.79 and 0.21, respectively. This study suggests the plausible use of rutile TiO2 based (low-cost and structurally stable) materials as electrolytes in SOFC.  相似文献   

10.
Low temperature solid oxide fuel cells (SOFCs) that efficiently utilize widely available hydrocarbon resources are highly desirable for cost reduction and durability purposes. In this work, SOFCs consisting of highly ionic conductive ceria-carbonate composite electrolytes and lithiated transition metal oxide symmetric electrodes are assembled and their electrochemical performances at reduced temperature (≤650 °C) are investigated using syngas fuel (44.65% H2, 10.19% CH4, 2.01% CO and the balanced CO2) derived from pyrolytic urban sludge. The cell gives a peak power output of 127 mW cm?2 at 600 °C and shows a relatively stable operation for 11 hours under constant voltage operational conditions. Though the composite electrode presents a moderately high polarization resistance toward CH4 and CO oxidation and the electrochemical performance is highly correlated with the microstructure of ceria-carbonate electrolyte, it is interesting to see that a higher concentration of methane is obtained after the fuel cell reaction, which may suggest an alternative approach to realize the power and chemical co-generation within such a SOFC reactor. Finally, the symmetric electrode shows high resistance toward carbon deposition, possibly due to its high alkaline nature.  相似文献   

11.
《Ceramics International》2023,49(4):6030-6038
Mixed ionic and electronic conduction (MIEC) in the composite cathode can alter oxygen stoichiometry and other physiochemical properties, eventually promoting the electrocatalytic functionalities for oxygen reduction reaction (ORR) at low operational temperatures (<650 °C). Here, we demonstrate a composite cathode of CoGd0.8Fe1.80O4 /Gd0.10Ce0.9O2?δ (CGFO-GDC), which delivers low electrode polarization resistance of 0.60 Ω cm2 at 550 °C. The best-performing sample CGFO-GDC exhbits the peak power density (PPD) of 611-343 mW cm?2 at 550-470 °C under a fuel cell conditions. Moreover, durability measurement verifies CGFO-GDC as a chemically stable cathode with improved ORR catalytic functionality. Additionally, first principle calculations using density function theory (DFT) were also conducted to analyze the ion diffusion mechanism of fabricated CGFO-GDC cathode. Our findings certify that introducing ionic conducting GDC into CGFO sample improves the catalytic functionalities. As a result, the composite CGFO-GDC based SOFC delivers minimum electrode polarization resistance with improved power output owing to its enhanced oxygen vacancies and fast catalytic reactions at 550 °C.  相似文献   

12.
The ionic conduction of perovskite-type oxides remains a fundamental and important issue in the research of solid oxide fuel cells (SOFCs). In this research, a thin perovskite-type ceramic membrane was fabricated in situ at anode side attached to the surface of Gd0.2Ce0·8O1.9 (GDC20) electrolyte membrane. The single cell working between H2 and static air showed good stability (over 50 h), high open circuit voltages (above 1.0 V) as well as high peak power densities (749-264 mW cm?2) from 600 to 500 °C. Detailed analyses of current research demonstrated that the thin perovskite film mainly possessed the oxygen ion conductivity under reducing atmosphere, while the proton conductivity was severely suppressed, showing the high flexibility in ionic conductivity of perovskite oxide. This work also implies that the oxygen ion and proton conduction may be in high correlation with each other, which provides important information to unveil the nature of the ionic conduction of perovskite-type oxides.  相似文献   

13.
《Ceramics International》2023,49(5):7935-7945
Solid polymer electrolytes (SPEs) have attracted much attention because of their potential in improving energy density and safety. Vanadium doped ceramic matrix Li6.7La3Zr1.7V0.3O12 (LLZVO) was synthesized by high-temperature annealing, and formed a composite electrolyte with polyethylene oxide (PEO). Compared with pure PEO electrolyte membrane, the composite electrolyte membrane exhibited better ionic conductivity (30 °C: 3.2 × 10?5 S cm?1; 80 °C: 3.6 × 10?3 S cm?1). The combination of LLZVO was beneficial to improve the lithium ion transference number (tLi+) of SPE, which was as high as 0.81. The Li/SPE/LiFePO4 battery shows good cycling ability, with a specific capacity of 142 mAh g?1 after a stable cycle of 150 cycles. Meanwhile, the symmetrical lithium battery with composite electrolyte can work continuously for 1200 h without short circuit at the current density of 0.1 mA cm?2 at 50 °C, and the capacity is 0.176 mAh. Vanadium doped ceramic matrix LLZVO as an active ionic conductor, improved the overall performance of solid electrolyte.  相似文献   

14.
Yttria (8 mol%) stabilized zirconia (8YSZ) photocurable slurry is the basis for stereolithography-based 3D (SLA) printed structured electrolyte support for monolithic solid oxide fuel cell (SOFC) stack. The curing resin with trifunctional trimethylolpropane triacrylate and 1,6-hexanediol diacrylate (TMPTA/HDDA) mass ratio of 1.5:8.5 and 1 wt% of photoinitiator provided excellent curing performance and low viscosity of 2.1 mPa·s. Stable 8YSZ photocurable slurry possessing high solid content of 43 vol% and low viscosity of 3.6 Pa·s at 30 s?1 shear rate were obtained, without particle sedimentation after 180-day stability test. The activation energy of 8YSZ fabricated by 3D printing method was 0.87 eV, similar to that by dry-pressing method. The 3D printed monolithic 3-tube SOFC stack exhibited a peak power density of 230 mW·cm?2 at 850 °C. This research proves the great potential of 3D printing technology to prepare monolithic SOFC stack, paving the way to develop SOFCs for practical applications.  相似文献   

15.
Low melting point and high ionic conductivity of γ-Bi2O3 make it a promising additive to decrease the sintering and operation temperatures of yttria stabilized zirconia (YSZ)-based electrolyte for solid oxide fuel cell application. Herein, γ-Bi2O3/YSZ composite powders with good uniformity and precise control of morphology and phase were successfully synthesized via a low cost chemical precipitation method. Both the concentration of NaOH solution and the reactant adding sequence affect the morphology and synthesis of γ-Bi2O3/YSZ composite powders. When the concentration of NaOH was in the range of 1.25–1.875 M, tetrahedron γ-Bi2O3/YSZ powders were synthesized. While, cubic structural γ-Bi2O3/YSZ powders were obtained when adding Bi3+ and YSZ suspension into 1.5 M NaOH solution. The addition of YSZ facilitates the fabrication of γ-Bi2O3 and widens its process window to a higher NaOH concentration. Thus synthesized γ-Bi2O3/YSZ composite powders effectively decrease the sintering temperature of YSZ to 1050°C due to the uniform distribution of γ-Bi2O3 inside YSZ powders. This work provides a facile method to fabricate γ-Bi2O3/YSZ composite powder with controlled morphology and phase, which will promote the mass production of low cost YSZ-based electrolyte for SOFC applications.  相似文献   

16.
The possibility of developing large solid oxide fuel cell (SOFC) stacks based upon 25 cm2 ceramic oxide anode‐supported cells is investigated. Planar fuel cells comprising strontium titanate‐based anode support impregnated with active catalysts were prepared using a combination of deposition techniques. The fuel cell tests performed in a semisealed rig have shown power densities of 185 mW cm?2 at 850°C using humidified hydrogen as fuel and air as oxidant. The structure and evolution of the catalytically active impregnated materials‐10 mol% Gd‐doped CeO2 and nickel‐ are analysed using electron microscopy at the end of the fuel cell test, revealing that a ceria and nickel layer surrounds the titanate backbone grains while ~50–150 nm spherical‐like nickel particles uniformly decorate this top layer.  相似文献   

17.
Electrostatic spray deposition (ESD) was applied to fabricate a thin-layer of yttria-stabilized zirconia (YSZ) electrolyte on a solid oxide fuel cell (SOFC) anode substrate consisting of nickel-YSZ cermet. A colloidal solution of 8 mol% YSZ in ethanol was sprayed onto the substrate anode surface at 250–300 °C by ESD. After sintering the deposited layer at 1250–1400 °C for 1–2 h depending on temperature, the cathode layer, consisting of lanthanum strontium manganate (LSM), was sprayed or brush coated onto the electrolyte layer. Performance tests and AC impedance measurements of the complete cell were carried out at 800 °C to evaluate the density and conductance of the electrolyte layer formed by ESD. With a 97% H2/3% H2O mixture and air as fuel and oxidant gas, respectively, the open-circuit voltage (OCV) was close to theoretical and electrolyte impedance was about 0.23Ω cm2. A power density of 0.45 W cm−2 at 0.62 V was obtained. No abnormal degradation was observed after 170 h operation. The electrolyte sintering temperature and time did not significantly affect the electrolyte impedance. on leave from  相似文献   

18.
《Ceramics International》2020,46(8):11811-11818
Symmetric solid oxide fuel cells (SSOFCs) with the identical anode and cathode electrocatalysts show promise to reduce material and system cost while increasing the cell lifespan. In this work, BaZr0.1Co0.4Fe0.4Y0.1O3 (BZCFY) oxide perovskite is proposed as a symmetric electrode for SSOFCs based on proton conducting electrolyte, with targets of reducing temperature and high-performance application. Active oxygen ionic conductor and catalyst, SDC, is composited to improve the cell performance and electrode durability. Those materials show good chemical compatibility while BZCFY is decomposed to alloy and mixed oxide composite, which significantly affects electrode activity. SDC-BZCFY composite gives an electrode polarization resistance of 1.35–13.7 Ω cm2 and 0.32–1.59 Ω cm2 for hydrogen oxidation reaction and oxygen reduction reaction on the proton conducting electrolyte, BZCY, at the temperature range of 700–550 °C, respectively. Moreover, it displays an excellent oxygen reduction kinetics with an impressive activation energy of 0.91 eV. The polarization resistances are significantly reduced in the fuel cell condition owning to the electrochemical promotion effect under open-circuit condition. Quasi-SSOFCs with BZCY electrolyte in a thickness of 480 μm and electrode thickness of 25 μm give a peak power density of 114.8 and 74.3 mW cm−2 at 650 and 600 °C, respectively. In addition, SSOFC also displays acceptable durability under constant voltage operational condition for 25 h. This work highlights alternative active electrode material for symmetric solid oxide fuel cells for low temperature operation.  相似文献   

19.
Reduce electrolyte thickness can improve solid oxide fuel cell (SOFC) performance. However, thinner electrolyte often contains prominent defects and flaws, which may decrease the yield and increase operation risk. This work proposes a method to modify the thin film YSZ electrolyte, to improve cell reliability and durability. The as-sintered anode supported half-cell with screen printed YSZ electrolyte was immersed in precursor solution of Y(NO3)3·6H2O and Zr(NO3)4·5H2O, and being treated under hydrothermal condition of 150°C for 12 h. As a result, the modified cells show slight increase in the OCV values. Furthermore, the hydrothermal modification effectively promotes interface sintering between YSZ electrolyte and GDC barrier layer, yielding a smaller ohmic resistance of .142 Ω·cm2 (a decrease of ∼11%) and a higher peak power density of .964 W/cm2 (an increase of ∼18%) at 750°C, than pristine cell. Moreover, the modified cell operates stably over 300 h, while the pristine cell presents large and irregular voltage fluctuations. This work suggests that the hydrothermal modification is an effective and promisingly industrial applicable method for thin film electrolyte recovery in SOFCs.  相似文献   

20.
《Ceramics International》2017,43(15):11692-11698
Yttria-stabilized zirconia (YSZ) is a common solid electrolyte for solid oxide fuel cells (SOFCs) because of its high electrical conductivity and high ionic transference number in both oxidizing and reducing atmospheres. Samarium doped ceria (SDC) has also been considered as an alternative electrolyte material to YSZ for intermediate temperature SOFC because of its high conductivity at relatively low temperatures. Due to improved ionic conductivity of YSZ at high temperature (~ 800 °C) and good conductivity of SDC in the intermediate temperature range (600–800 °C), the electrical properties of YSZ-SDC composites were investigated. Composites of YSZ and SDC with weight ratio 9.5:0.5, 9:1 and 8.5:1.5 were synthesized via glycine-nitrate route. XRD pattern of the systems revealed the formation of composite phases. Biphasic electrolyte microstructures were observed, in which SDC grains are dispersed in YSZ matrix. Relative density of the compositions was found to be more than 92% to the theoretical density. It was observed that the interface provides a channel for ionic transport, leading to a notable ionic conductivity. With increase in SDC weight ratio the electrical conductivity was found to increase. For weight ratio 8.5:1.5 the electrical conductivity was found to be greater than that of YSZ in the temperature range 400–700 °C. Further, for weight ratio more than 8.5:1.5, conductivity was found to decreases due to the formation of a few other insulating impurity phases. The electrode polarisation was also found to reduce significantly with SDC in the composite electrolyte system. Thus, such composite system may be useful for improving the ionic conductivity of the composite electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号