首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Zinc Vanadates in Vanadium Oxide-Doped Zinc Oxide Varistors   总被引:1,自引:0,他引:1  
Convergent-beam electron diffraction has been used to determine the space groups of β- and γ-Zn3(VO4)2 particles in vanadium oxide-doped zinc oxide varistors. The crystal structure of β-Zn3(VO4)2 has been determined to be monoclinic with space group P 21 and lattice parameters of a = 9.80 Å, b = 8.34 Å, c = 10.27 Å, and β= 115.8°, whereas that of γ-Zn3(VO4)2 is monoclinic with space group Cm and a = 10.40 Å, b = 8.59 Å, c = 9.44 Å, and β= 98.8°. Energy-dispersive X-ray microanalysis of these two phases shows significant deviations from their expected stoichiometry. It is apparent that the β-phase is, in fact, the metastable Zn4V2O9 phase, whereas the γ-phase either is a new oxide that consists of zinc, vanadium, and manganese or, more likely, is a zinc vanadate phase with a Zn:V atomic ratio of 1:1 that has the ability to go into solid solution with manganese.  相似文献   

2.
Formation of heterovalent Zr-substituted solid solutions (up to 7 mol%) for Yb3+ in Na6Yb3(PO4)5 and LiNa5Yb3(PO4)5 complex phosphates was studied by ceramic technique at 950°C. Obtained samples were investigated with X-ray powder diffraction, infrared, and impedance spectroscopy. Zr-substituted (7 mol%) Na6Yb3(PO4)5 has ionic conductivity of 1.6·10−2 S/cm at 300°C and 4.8·10−5 S/cm at room temperature. An updated version of phase diagram for ScPO4–Na3PO4–Li3PO4 quasi-ternary system was provided.  相似文献   

3.
Compositions along the Ca2SiO4–Ca3(PO4)2 join were hydrated at 90°C. Mixtures containing 15, 38, 50, 80, and 100 mol% Ca3(PO4)2 were fired at 1500°C, forming nagelschmidtite + a 1-CaSiO4, A -phase and silicocarnotite and a -Ca3(PO4)2, respectively. Hydration of these produces hydroxylapatite regardless of composition. Calcium silicate hydrate gel is produced when Ca2SiO4≠ 0 and portlandite when Ca2SiO4 is >50%. Relative hydration reactivities are a -Ca3(PO4)2 > nagelschmidtite > α 1-Ca2SiO4 > A -phase > silicocarnotite. Hydration in the presence of silica or lime influences the amount of portlandite produced. Hydration in NaOH solution produces 14-A tobermorite rather than calcium silicate hydrate gel.  相似文献   

4.
Zinc substituted β-tricalcium phosphate [β-Ca3(PO4)2] was formed by substituting a zinc precursor in calcium-deficient apatite through aqueous precipitation technique. Heat treatment at 1000°C led to the formation of well crystalline β-Ca3(PO4). Refinement technique was used to determine the influence of incorporated zinc in the β-Ca3(PO4) structure. The structural data for all the four different zinc substituted β-Ca3(PO4) ranging from 0–9 mol% of zinc investigated in the present study confirmed the rhombohedral structure of β-Ca3(PO4) in the hexagonal setting (space group R 3 c ). The incorporation of lower sized Zn2+ (0.745 Å for sixfold coordination with O) at the higher sized Ca2+ (1.00 Å for sixfold coordination with O) site in the β-Ca3(PO4) structure led to the contraction of unit cell parameters. The added zinc prefers to occupy the Ca(5) site of β-Ca3(PO4) structure.  相似文献   

5.
A Zn2Te3O8 ceramic was investigated as a promising dielectric material for low-temperature co-fired ceramics (LTCC) applications. The Zn2Te3O8 ceramic was synthesized using the solid-state reaction method by sintering in the temperature range 540°–600°C. The structure and microstructure of the compounds were investigated using X-ray diffraction (XRD) and scanning electron microscopy methods. The dielectric properties of the ceramics were studied in the frequency range 4–6 GHz. The Zn2Te3O8 ceramic has a dielectric constant (ɛr) of 16.2, a quality factor ( Q u× f ) of 66 000 at 4.97 GHz, and a temperature coefficient of resonant frequency (τf) of −60 ppm/°C, respectively. Addition of 4 wt% TiO2 improved the τf to −8.7 ppm/°C with an ɛr of 19.3 and a Q u× f of 27 000 at 5.14 GHz when sintered at 650°C. The chemical reactivity of the Zn2Te3O8 ceramic with Ag and Al metal electrodes was also investigated.  相似文献   

6.
Bi2O3 was added to a nominal composition of Zn1.8SiO3.8 (ZS) ceramics to decrease their sintering temperature. When the Bi2O3 content was <8.0 mol%, a porous microstructure with Bi4(SiO4)3 and SiO2 second phases was developed in the specimen sintered at 885°C. However, when the Bi2O3 content exceeded 8.0 mol%, a liquid phase, which formed during sintering at temperatures below 900°C, assisted the densification of the ZS ceramics. Good microwave dielectric properties of Q × f =12,600 GHz, ɛr=7.6, and τf=−22 ppm/°C were obtained from the specimen with 8.0 mol% Bi2O3 sintered at 885°C for 2 h.  相似文献   

7.
Domain reorientation in single crystals of lead zinc niobatelead titanate solid solutions was examined, because the reorientation contributes to the electrically controlled change of shape and change of response in piezoelectric transducers and actuators. An optical microscope technique was used to explore the buildup of macropolar domains from micropolar regions in relaxor compositions. Poorly defined "ambiguous" spindlelike domains changed to distinct lamellar domains as PbTiO3 content was increased. The domain walls in Pb(Zn1/3Nb2/3)O3-rich samples moved with a wavelike motion. The motion ceased or "froze-in" below –130° and –30°C for field-biased and nonbiased samples, respectively. The domains were observed at various temperatures from 300° to –185°C and electric fields up to ±10kV/cm.  相似文献   

8.
An extensive X-ray study of CeO2–Nd2O3 solid solutions was performed, and the densities of solid solutions containing various concentrations of NdO1.5 were measured using several techniques. Solid solutions containing 0–80 mol% NdO1.5 were synthesized by coprecipitation from Ce(NO3)3 and Nd(NO3)3 aqueous solutions, and the coprecipitated samples were sintered at 1400°C. A fluorite structure was observed for CeO2–NdO1.5 solid solutions with 0–40 mol% NdO1.5, which changed to a rare earth C-type structure at 45–75 mol% NdO1.5. The change in the lattice parameters of CeO2–NdO1.5 solid solutions, when plotted with respect to the NdO1.5 concentration, showed that the lattice parameters followed Vegard's law in both the fluorite and rare earth C-type regions. The maximum solubility limit for NdO1.5 in CeO2 solid solution was approximately 75 mol%. The relationship between the density and the Nd concentration indicated that the defect structure followed the anion vacancy model over the entire range (0–70 mol% NdO1.5) of solid solution.  相似文献   

9.
Mixed solutions of Ca(NO3)2 and (NH4)2HPO4 with Ca/P = 1.50 were spray-pyrolyzed at 600°C to produce β-calcium orthophosphate (β-Ca3(PO4)2) powder; the spray-pyrolyzed powder was ground and then calcined at 600°C for 1 h. The best crystalline β-Ca3(PO4)2 powder was obtained from the solution with 1.80 mol.L–1 Ca(NO3)2, 1.20 mol.L–1 (NH4)2HPO4. The resulting powder was composed of primary particles with sizes of <0.5 μm. Dense β-Ca3(PO4)2 ceramics with a relative density of 96.1% could be fabricated by firing this compressed powder at 1070°C for 5 h.  相似文献   

10.
In the system Ta2O3-Al2O5 solid solutions of metastable δ-Ta2O5 (hexagonal) are formed up to 50 mol% Al2O3 from amorphous materials prepared by the simultaneous hydrolysis of tantalum and aluminum alkoxides. The values of the lattice parameters decrease linearly with increasing Al2O3, content. The to β-Ta2O5 (orthorhombic, low-temperature form) transformation occurs at ∼950°C. The solid solution containing 50 mol% Al2O3 transforms at 1040° to 1100°C to orthorhombic TaAlO4. Orthorhombic TaAlO4 contains octahedral TaO6 groups in the structure.  相似文献   

11.
Solid solutions of AlVO4 crystallize at lower temperatures than amorphous materials between 50 and 70 mol% Al2O3 prepared by the simultaneous hydrolysis of aluminum and vanadyl alkoxides. They decompose into α-Al2O3, and V2O5, at 775° to 800°C. The compound AlVO4 prepared from 50 mol% Al2O3 has a triclinic unit cell with a = 0.6471 nm, b = 0.7742 nm, c = 0.9084 nm, α= 96.848°, β= 105.825°, and γ= 101.399°. The volume of the unit cell increases continuously with increases in Al2O3 content. The structure contains tetrahedral AlO4, octahedral AlO6, and tetrahedral VO4 groups.  相似文献   

12.
Low-Fired (Zn,Mg)TiO3 Microwave Dielectrics   总被引:13,自引:0,他引:13  
A dielectric ceramic comprised of (Zn1- x Mg x )TiO3 ( x = 0 to x = 0.5) with low sintering temperature and promising microwave properties was prepared by applying a semichemical synthesis route and a microbeads milling technique. X-ray diffractometry and thermal analyses results indicated that the phase stability region of the hexagonal (Zn,Mg)TiO3 extended to higher temperatures as the amount of magnesium increased. The dielectric properties in this system exhibited a significant dependence on the sintering conditions, especially near the phase decomposition temperature. From 950°C, the temperature compensation characteristics occurred as the phase composition changed from hexagonal (Zn,Mg)TiO3 to two phases: (Zn,Mg)2TiO4 and rutile. The magnesium content for zero temperature coefficient (tauf) was ~3 mol% at 950°C; however, tauf increased with the sintering temperatures because of the shift of the decomposition temperature.  相似文献   

13.
Compositions in the Zn2TiO4+ x TiO2 system ( x = 0–0.43) were synthesized via the solid-state reaction route, using high-purity (≥99.99%) metal-oxide powders. The incorporation of titanium, in the form of TiO2, in Zn2TiO4 spinel ceramics was investigated by analyzing the crystal structure and measuring the dielectric properties. The results of the crystal structure analyses suggested that TiO2 levels of x ≤ 0.33 could be incorporated into the Zn2TiO4 spinel at temperatures of T > 945°C, whereas the solid solubility of titanium in Zn2TiO4 decreased for T < 945°C. When x ≥ 0.28, the Zn2Ti3O8 phase formed in the Zn2TiO4 grain interior while cooling after heat treatment. Measurement of the microwave dielectric properties also supported the conclusion that the solubility limit of titanium in Zn2TiO4 was close to x = 0.33, as determined through analysis of the crystal structure.  相似文献   

14.
β-sialon and Nd2O3-doped α-sialon materials of varying composition were prepared by sintering at 1775° and 1825°C and by glass-encapsulated hot isostatic pressing at 1700°C. Composites were also prepared by adding 2–20 wt% ZrO2 (3 mol% Nd2O3) or 2–20 wt% ZrN to the β-sialon and α-sialon matrix, respectively. Neodymium was found to be a fairly poor α-sialon stabilizer even within the α-phase solid solution area, and addition of ZrN further inhibited the formation of the α-sialon phase. A decrease in Vickers hardness and an increase in toughness with increasing content of ZrO2(Nd2O3) or ZrN were seen in both the HIPed β-sialon/ZrO2(Nd2O3) composites and the HIPed Nd2O3-stabiIized α-sialons with ZrN additions.  相似文献   

15.
Low-thermal-expansion ceramics having arbitrary thermal expansion coefficients were synthesized from homogeneous solid solutions in the system KZr2(PO4)3─KTi2(PO4)3 (KZP–KTP). Dense and strong ceramics were fabricated by sintering at 1100° to 1200°C with 2 wt% MgO. The thermal expansion coefficient increased from 0 to +3 × 10−6/°C with increasing x in KZr2 − xTix (PO4)3 (KZTP). In addition, a functionally gradient material with respect to thermal expansion was prepared by forming a series of KZTP solid solutions in a single ceramic body. By heating a pile of KZP and KTP ceramics in contact with each other, KZP and KTP bonded together to form a KZTP gradient solid solution near the interface.  相似文献   

16.
The system ZnO-Ti02 has been investigated using quenching, hydrothermal, strip-furnace, and solid-state-reaction techniques. Two compounds were found: Zn2Ti04, which melts congruently at 1549 C., and ZnTiO2, which dissociates hydrothermally at 945° C. to give Zn2Ti04and rutile. Two eutectics were found: one between ZnO and Zn2Ti04 at 32 mole % TiO, and 1537°C. and the other between Zn2TiO4and TiO2 at 58 mole % TiO2 and 1418°C. Rutile was the only modification of TiO2 observed. The reported melting points of ZnO and TiO2 are 1975° and 1830°C. respectively; however, data exist which indicate the sublimation of ZnO at atmospheric pressure. Loss of ZnO by volatilization slightly decreased the accuracy of the liquidus relations. Reported solid solutions of TiO2 in Zn2Ti04 and ZnTiO3 were not encountered, and explanations of this discrepancy are proposed.  相似文献   

17.
Subsolidus phase relationships in the Ga2O3–In2O3 system were studied by X-ray diffraction and electron probe microanalysis (EPMA) for the temperature range of 800°–1400°C. The solubility limit of In2O3 in the β-gallia structure decreases with increasing temperature from 44.1 ± 0.5 mol% at 1000°C to 41.4 ± 0.5 mol% at 1400°C. The solubility limit of Ga2O3 in cubic In2O3 increases with temperature from 4.X ± 0.5 mol% at 1000°C to 10.0 ± 0.5 mol% at 1400°C. The previously reported transparent conducting oxide phase in the Ga-In-O system cannot be GaInO3, which is not stable, but is likely the In-doped β-Ga2O3 solid solution.  相似文献   

18.
The 1780°C isothermal section of the reciprocal quasiternary system Si3N4-SiO2-BeO-Be3N2 was investigated by the X-ray analysis of hot-pressed samples. The equilibrium relations shown involve previously known compounds and 8 newly found compounds: Be6Si3N8, Be11Si5N14, Be5Si2N6, Be9Si3N10, Be8SiO4N4, Be6O3N2, Be8O5N2, and Be9O6N2. Large solid solubility occurs in β-Si3N4, BeSiN2, Be9Si3N10, Be4SiN4, and β-Be3N2. Solid solubility in β-Si3N4 extends toward Be2SiO4 and decreases with increasing temperature from 19 mol% at 1770°C to 11.5 mol% Be2SiO4 at 1880°C. A 4-phase isotherm, liquid +β-Si3N4 ( ss )Si2ON2+ BeO, exists at 1770°C.  相似文献   

19.
Titanium substrates were oxidized in oxygen or air at temperatures of 600°–800°C, then immersed in solutions of 2.0m M – 20.7m M CaCl2 and 1.2m M –12.4m M KH2PO4 for aging periods of 0.5–10 d. The titanium surface was successfully coated with hydroxyapatite (HAP) when the substrates were oxidized in oxygen gas at 610°C for 1 h and then aged in a solution of 2.00m M Ca2+ and 1.20m M PO43−. The Ca/P ratio of the surface coating increased toward its stoichiometric HAP value (return 10/6) as the aging time increased; the Ca/P ratio attained a value of 1.66 after 10 d.  相似文献   

20.
A narrow region of Zn-vacancy-containing cubic perovskites was formed in the (1− x )Ba3(ZnNb2)O9−( x )Ba3W2O9 system up to 2 mol% substitution ( x =0.02). The introduction of cation vacancies enhanced the stability of the 1:2 B-site ordered form of the structure, Ba(Zn1− x x )1/3(Nb1− x W x )2/3O3, which underwent an order–disorder transition at 1410°C, ∼35° higher than pure Ba(Zn1/3Nb2/3)O3. The Zn vacancies also accelerated the kinetics of the ordering reaction, and samples with x =0.006 comprised large ordered domains with a high lattice distortion ( c/a =1.226) after a 12 h anneal at 1300°C. The tungstate-containing solid solutions can be sintered to a high density at 1390°C, and the resultant ordered ceramics exhibit some of the highest microwave dielectric Q factors ( Q × f =1 18 000 at 8 GHz) reported for a niobate-based perovskite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号