首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Ceramics International》2022,48(2):1889-1897
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) are considered to be one of the most promising materials in the electromagnetic (EM) stealth of aero-engines, which is expected to achieve strong absorption and broad-band performance. Multiscale structural design was applied to SiCf/Si3N4–SiOC composites by construction of micro/nanoscale heterogeneous interfaces and macro double-layer impedance matching structure. SiCf/Si3N4–SiOC composites were fabricated by using SiC fibers with different conductivities and SiOC–Si3N4 matrices with gradient impedance structures to improve impedance matching effectively. Owing to its unique structure, SiCf/Si3N4–SiOC composites (A3-composites) achieved excellent EM wave absorption performance with a minimum reflection coefficient (RCmin) of ?25.1 dB at 2.45 mm and an effective absorption bandwidth (EAB) of 4.0 GHz at 2.85 mm in X-band. Moreover, double-layer SiCf/Si3N4–SiOC with an improved impedance matching structure obtained an RCmin of ?56.9 dB and an EAB of 4.2 GHz at 3.00 mm, which means it can absorb more than 90% of the EM waves in the whole X-band. The RC is less than ?8 dB at 2.6–2.8 mm from RT to 600 °C in the whole X-band, displaying excellent high-temperature absorption performance. The results provide a new design opinion for broad-band EM absorbing SiCf-CMCs at high temperatures.  相似文献   

2.
The combination of multiple loss characteristics is an effective approach to achieve broadband microwave wave absorption performance. The Fe-doped SiOC ceramics were synthesized by polymer derived ceramics (PDCs) method at 1500 °C, and their dielectric and magnetic properties were investigated at 2–18 GHz. The results showed that adding Fe content effectively controlled the composition and content of multiphase products (such as Fe3Si, SiC, SiO2 and turbostratic carbon). Meanwhile, the Fe promoted the change of the grain size. The Fe3Si enhanced the magnetic loss, and the SiC and turbostratic carbon generated by PDCs process significantly increased the polarization and conductance loss. Besides, the magnetic particles Fe3Si and dielectric particles SiO2 improved the impedance matching, which was beneficial to EM wave absorption properties. Impressively, the Fe-doped SiOC ceramics (with Fe addition of 3 wt %) presented the minimum reflection coefficient (RCmin) of ?20.5 dB at 10.8 GHz with 2.8 mm. The effective absorption bandwidth (EAB, RC < ?10 dB) covered a wide frequency range from 5 GHz to 18 GHz (covered the C, X and Ku-band) when the absorbent thickness increased from 2 mm to 5 mm. Therefore, this research opens up another strategy for exploring novel SiOC ceramics to design the good EM wave-absorbing materials with broad absorption bandwidth and thin thickness.  相似文献   

3.
《Ceramics International》2022,48(14):20168-20175
To improve the electromagnetic (EM) wave absorption performance of rare earth silicate in harsh environments, this work synthesized dense SiC–Y2Si2O7 composite ceramics with excellent EM wave absorption properties by using the polymer permeation pyrolysis (PIP) process, which introduced carbon and SiC into a porous Y2Si2O7 matrix to form novel composite ceramics. SiC–Y2Si2O7 composite ceramics with different numbers of PIP cycles were tested and analysed. The results show that the as-prepared composites exhibit different microstructures, porosities, dielectric properties and EM wave absorption properties. On the whole, the SiC–Y2Si2O7 composite ceramics (with a SiC/C content of 29.88 wt%) show superior microwave absorption properties. The minimum reflection loss (RLmin) reaches ?16.1 dB when the thickness is 3.9 mm at 9.8 GHz. Moreover, the effective absorption bandwidth (EAB) included a broad frequency from 8.2 GHz to 12.4 GHz as the absorbent thickness varied from 3.15 mm to 4.6 mm. In addition, the EM wave absorption mechanism was analysed profoundly, which ascribed to the multiple mediums of nanocrystalline, amorphous phases and turbostratic carbon distributed in the Y2Si2O7 matrix. Therefore, SiC–Y2Si2O7 composite ceramics with high-efficiency EM wave absorption performance promise to be a novel wave absorbing material for applications in harsh environments.  相似文献   

4.
Demand for high-performance electromagnetic (EM) wave absorbing materials with high-temperature resistance is always urgent for application in a harsh environment. In this contribution, two-dimensional material, Ti3C2Tx MXene, was introduced into a hyperbranched polyborosilazane. After pyrolyzation, the as-prepared TiC/SiBCN ceramics present excellent EM wave absorption in X-band. The TiC nanograins appearing after annealing provide multilevel reflection and interface polarization. Dipole polarization formed at interface defects, in company with interfacial polarization, also makes a great contribution to enhanced EM wave absorption. The TiC/SiBCN nanocomplex prepared with 5 wt% Ti3C2Tx MXene possesses a minimum reflection coefficient of −45.44 dB at 10.93 GHz and abroad bandwidth 8.4 and 12.4 GHz, almost covering the entire X-band. Tuning the thickness in the range of 2.35-2.54 mm, the effective absorption band can achieve the entire X-band. And the EM wave absorbing performance has been maintained to a large extent at 600°C with the minimum reflection coefficient of −26.12 dB at 12.13 GHz and the effective absorption bandwidth of 2 GHz. Last but not the least, TiC/SiBCN ceramics offer a good thermal stability in argon as well as in air atmosphere, making it possible to serve in high-temperature detrimental environments. This study is expected to provide a new perspective for the design of high-performance absorbing materials that are able to be used in harsh environments, especially in high temperatures.  相似文献   

5.
Silicon carbide (SiC) foam prepared by polymer infiltration and pyrolysis (PIP) process was further densified with β-SiC by chemical vapor infiltration (CVI) technique. Scanning electron microscopy and high-resolution transmission electron microscopy images confirmed the presence of highly entangled and branched in situ grown SiC wires of uniform diameter (∼500 nm) over the struts of open-cell SiC foam. A uniform rate increase in diameter from nanometer to micron range (∼11 μm) was observed with an increase in the CVI reaction period. X-ray diffraction results showed the formation of highly crystalline β-SiC structure along the <111> direction with stacking faults. The formation of SiC wires was explained by the vapor–liquid–solid mechanism and evenness of the surface and uniform growth rate of SiC confirmed the homogeneous concentration of gaseous species during CVI reaction. The compressive strength increased with relative density, with maximum values of 5.5 ± 1.26 MPa for ultimate SiC foam (ρ = 400 kg/m3) prepared by hybrid PIP/CVI technique. The thermo-oxidative stability of the resultant foam was evaluated up to 1650°C under air and shows excellent thermal stability compared to SiC foam prepared by PIP route. The densified SiC foam can find potential applications in the field of hot gas filters, catalyst supports, microwave absorption properties, and heat insulation for high-temperature applications.  相似文献   

6.
《Ceramics International》2023,49(12):20406-20418
Herein, we present the structural evolution of polymer-derived SiOC ceramics with the pyrolysis temperature and the corresponding change in their microwave dielectric properties. The structure of the SiOC ceramics pyrolyzed at a temperature lower than 1200 °C is amorphous, and the corresponding microwave complex permittivity is pretty low; thus, the ceramics exhibit wave transmission properties. The Structural arrangement of free carbon in the SiOC ceramics mainly happens in the temperature range of 1200 °C-1300 °C due to the separation from the Si–O–C network and graphitization, while the structural arrangement of the Si-based matrix mainly occurs in the range of 1300 °C-1400 °C owing to the separation of SiC4 from the Si–O–C network to form nanocrystalline SiC. In pyrolysis temperature range of 1200 °C-1400 °C, the microwave permittivity of SiOC shows negligible change. At a pyrolysis temperature exceeding 1400 °C, the carbothermal reaction of free carbon and the Si–O backbone becomes significant, leading to the formation of crystalline SiC. The as-formed SiC and residual defective carbon improve the polarization loss of SiOC ceramics. In this case, the SiOC ceramics show significantly increased complex permittivity, exhibiting electromagnetic absorption characteristics. These characteristics promote the application of polymer-derived SiOC ceramics to high-temperature electromagnetic absorption materials.  相似文献   

7.
SiC nanowires (SiC NWs) possess both high thermal stability of SiC ceramic and one-dimensional nanoscale features, which makes them highly attractive as reinforcements in ceramics or building units in resilient ceramic nanowires aerogels (NWAs) as well as blocks for electronic nanodevices. Understanding the oxidation behavior of SiC NWs at high temperatures is essential for their practical applications. Herein, we investigated the oxidation behavior of SiC NWs at 900–1200°C in air. Two oxidation stages were found, including an initial stage controlled by the reaction between oxygen and SiC at the SiO2/SiC interface and a subsequent oxygen diffusion–dependent stage. The oxide scale thickness was strongly influenced by the radius of the SiC NWs. With the increase of the NW radius from 40 to 120 nm, the oxidation activation energy of the oxidation process increases from 84.05 to 98.32 kJ/mol. The thermal insulation performances of SiC NWA, which is composed of SiC NWs, have been improved after oxidation. The evolution of the thermal insulation performance of SiC NWA during oxidation is consistent with the trends of the growth of the amorphous oxide layer, which indicates that exploring the oxidation kinetics is of great significance in understanding the high-temperature behavior of SiC NW-based materials. The present work provides insight into exploring the size effects on oxidation of SiC NWs, which may be helpful to further understanding the high-temperature applications of SiC NWA.  相似文献   

8.
Silicon oxycarbide (SiOC) ceramic has attracted great attention as fascinating candidate of high-temperature material, however, its thermal stability is significantly limited by the phase separation at high temperature. Here, a TiC/SiOC ceramic was prepared by pyrolysis of a tetrabutyl titanate modified carbon-rich polysiloxane (TBT/PSO) precursor. The TiC phase is in-situ formed by the carbothermal reaction of TBT-derived amorphous TiO2 phase with excess free-carbon phase during pyrolysis, and its size and amount increase with the pyrolysis temperature. The SiC phase appears at a higher temperature than the TiC phase and is hindered by the increased Ti content in the TBT/PSO precursor. Thus, the TiC/SiOC ceramic exhibits better thermal stability and crystallization resistance than the TiC-free SiOC ceramic under the thermal treatment (1500 °C) in argon atmosphere. The in-situ formation of metal carbide into the carbon-rich SiOC ceramic would further expand its application at high temperature environments.  相似文献   

9.
《Ceramics International》2022,48(17):24803-24810
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) have been widely used as structural-functional materials at high temperatures. However, their mechanical and electromagnetic wave (EMW) absorbing properties will deteriorate due to high-temperature oxidation. Therefore, unique sandwich structure, consisting of inner Si3N4 impedance layer, middle porous SiOC loss layer and dense oxidation-resistant Si3N4 layer, was proposed to enhance multiple material properties in oxidation environment. Herein, SiCf/Si3N4–SiOC–Si3N4 composites was fabricated by alternating chemical vapor infiltration (CVI) and polymer infiltration pyrolysis (PIP) methods. For these composites, SiC fiber is used as both reinforcing phase and electromagnetic (EM) absorber. CVI Si3N4 matrix was distributed in inner and outer layer of the SiCf/Si3N4–SiOC–Si3N4 composites. While inner Si3N4 layer between BN interphase and SiOC matrix forms nano-heterogeneous interphase to consume EM energy and enhance mechanical properties of composites, outer dense and oxidation-resistant CVI Si3N4 coating serves to maintain properties. PIP SiOC matrix exhibits porous structure that can effectively deflect cracks and achieve multiple scattering of EMW. SiCf/Si3N4–SiOC–Si3N4 composites with sandwich structure demonstrated excellent EMW absorbing properties and mechanical performance in high-temperature oxidation environments.  相似文献   

10.
Herein, the SiC nanowires were successfully fabricated via chemical vapor infiltration (CVI) into carbon fiber felts (CFs) and then the SiOC/SiCnws/CFs composites were synthesized by precursor infiltration and pyrolysis (PIP) processes. Results indicated that the lightweight composites possessed enhanced mechanical performance, low thermal conductivity, and excellent electromagnetic wave absorption properties. Detailedly, the compressive strength reached to 22.0 MPa and 9.6 MPa after two PIP processes cycles in z and x/y directions, respectively. Meanwhile, the composites exhibited tailored electromagnetic wave absorption performance with the effective absorption bandwidth of 3.06 GHz, and the minimum reflection loss (RLmin) was -48.2 dB with a thickness of 3.6 mm. The present work has a guidance to prepare and design multifunction properties for application in harsh environment.  相似文献   

11.
Quaternary siliconboron carbonitride (SiBCN) ceramics show excellent high-temperature stability and oxidation resistance, indicating great potential as high-temperature electromagnetic (EM) wave absorbing materials. In this contribution, an efficient and facile method was developed to prepare bulk iron-containing SiBCN (Fe–SiBCN) ceramics with remarkable EM wave absorption at high temperature by pyrolyzing boron and iron containing precursors (PSZV-B–Fe). The introduction of boron and iron not only improves the high-temperature stability but also influences the complex permittivity and EM wave absorption. The minimum reflection coefficient (RCmin) is −61.05 dB, and the effective bandwidth absorption (EAB) is 3.35 GHz (9.05–12.4 GHz). The RCmin will be decreased to −52.3 dB at 600°C as well as the EAB covers more than 67% of the X band (2.8 GHz). The high-temperature stable Fe–SiBCN ceramics with adjustable dielectric properties can be utilized as high-performance EM wave-absorbing materials in high-temperature and harsh environments.  相似文献   

12.
《Ceramics International》2022,48(16):23172-23181
Good impedance matching is vital in upgrading the performance of electromagnetic (EM) wave-absorbing materials. In this study, Si3N4/SiO2/SiC–Y2Si2O7 composite ceramics were synthesized by sintering and chemical vapor infiltration (CVI) technology with gradual impedance matching. The relationship between the microstructure of the as-prepared composite ceramics and EM wave absorption characteristics was thoroughly explored. It was found that the amorphous Si3N4, SiO2, and SiC layers were constructed with a gradual impedance matching structure, which not only improved impedance matching but also increased the number of nano interfaces. More importantly, SiC nanocrystals effectively increased the conduction loss, and the presence of defects and nanoscale heterogeneous interfaces further increased the polarization loss. Consequently, the as-prepared composite ceramics displayed enhanced EM wave absorption properties, with a minimum reflection coefficient (RCmin) value of less than ?20 dB over a temperature range of 25 °C (RT)-300 °C, and an effective absorption bandwidth (EAB) maintained at 4.2 GHz with the thickness range of 3.75–4.75 mm. These results demonstrated the practical significance of high-performance EM wave absorption materials that can be applied in high-temperature and water vapor environments.  相似文献   

13.
Ceramic nanofibers with excellent thermal stability and low thermal conductivity are highly desired for high-temperature thermal insulation applications. However, the incompatibility of thermal stability and low thermal conductivity at high-temperatures largely limit the practical use of conventional single-phase ceramic nanofibers. Here, we report the preparation of multi-phase SiZrOC nanofiber membranes (NFMs) composed of amorphous SiOC and ZrO2 nanocrystals via electrospinning technique. The fabricated SiZrOC NFMs exhibited excellent high-temperature stability (∼1200 °C in Ar) and low thermal conductivity (∼0.1392 W m−1 K−1 at 1000 °C in N2). The decreased thermal conductivity is achieved through a synergistic mechanism, that the multi-phase interfaces and the ZrO2 nanocrystals create thermal transfer barriers to reduce the heat transfer, whilst the SiOC phase effectively suppresses radiative heat transfer. This unique combination of amorphous SiOC and ZrO2 nanocrystals provides a novel strategy to prepare high-performance thermal insulation materials, and the obtained SiZrOC NFMs are promising high-temperature thermal insulation materials.  相似文献   

14.
Flexible microwave absorbers with high stability are in increasing demand for the applications under harsh conditions. SiC as a functional ceramic material has the feature of high environmental tolerance and adjustable electromagnetic (EM) absorbing properties, making them suitable to be applied for harsh environments. However, the electrical property of SiC requires to be further enhanced to obtain qualified EM absorbing performance. In this work, multiwall carbon nanotubes (CNTs) were introduced to SiC to enhance the electrical properties. Flexible two-dimensional (2D) CNTs loaded SiC fiber mats were prepared as EM absorbers via electrospinning and polymer-derived-ceramic (PDC) methods. The CNTs inside the fibers can form conductive networks and act as reinforcement to ensure high flexibility and enhance the microwave absorption properties of SiC mats. Thus, a reflection loss of ?61 dB and an effective absorption band (EAB) of 2.9 GHz were obtained. More importantly, the EM absorption can be adjusted by tuning the content of CNTs and the EAB can cover the entire X-band by adjusting the material thickness. The work provided a facile strategy to fabricated flexible 2D ceramic mats with high environmental stability and tunable electrical properties, which may shed light on the production of reliable EM absorber for broadband EM absorption applications.  相似文献   

15.
《Ceramics International》2019,45(13):16369-16379
With the rapid development of high power electromagnetic (EM) equipment and high-speed aircraft, the powerful and high oxidation-resistance absorbers are fundamentally desirable for the EM field. Herein, a novel high temperature anti-oxidative SiC/Fe3Si/CNTs composite is synthesized by a facile polymer derived ceramic (PDC) route from a Fe-containing polysilyacetylene (PSA). The microstructure of as-prepared SiC/Fe3Si/CNTs composite absorber is featured by micro-sized SiC ceramic grains with spherical Fe3Si nanoparticles and carbon nanotubes (CNTs) attached to. The vector network analyzer tests show a tunable wave-absorbing performance by adjusting the thickness of layer, and the effective bandwidth (the reflection loss < −10 dB) is 3.3–16.8 GHz for the sample S-1400 (heat treatment at 1400 °C in nitrogen flow). The minimal RL value is −41.2 dB at 10.5 GHz at a thickness of 2 mm and an effective bandwidth is nearly 4 GHz (12.9–16.9 GHz) at the thickness of only 1.5 mm. Moreover, after the oxidation treatment at 800 °C in the air, this absorber maintains the main structure and shows a good high temperature oxidation resistance. This absorber still remains excellent wave absorption property, in view of a minimal RL value of −40 dB at the thickness of 3 mm and a bandwidth of 4.8 GHz (10.4–15.2 GHz) at the thickness of 2.5 mm. The mechanism of high EM wave absorption performance is studied and attributed to the impendence matching, polarization, and the magnetic properties. Thus, the SiC/Fe3Si/CNTs composite is a promising EM absorber for high-temperature EM wave-absorbing applications.  相似文献   

16.
《Ceramics International》2023,49(1):450-460
A SiCnw@SiC foam with highly efficient microwave absorption (MA) performance was successfully synthesized based on Vapor-Solid (V–S) growth mechanism. SiC nanowire (SiCnw) and SiC foam skeleton efficiently form a double network coupling structure, which gives additional interface polarization and dielectric loss for the SiC foam, significantly enhancing the MA capacity of the foam. In this study, the SiCnw@SiC foam has a minimum reflection loss (RLmin) of ?86.31 dB and an effective absorption bandwidth (EAB) of 12.55 GHz in room-temperature environment. However, the MA performance of SiCnw@SiC foam decreases with increasing temperature, which may be due to the thickening of the SiO2 layer in the SiCnw at high temperature. At 600 °C, it has no effective absorption bandwidth, while at 1000 °C, the EAB and RLmin were 0.6 GHz and ?13.04 dB, respectively. As the temperature reaches 1000 °C, the defects in the material further increase, leading to a recovery in the MA performance.  相似文献   

17.
Carbon-bonded carbon fiber (CBCF) composites are novel and important high-temperature insulation materials owing to their light weight, low thermal conductivity and high fracture tolerance. To further improve the mechanical property of CBCF composite, we propose a three-dimensional (3D) SiC nanowires structure, which is in situ grown on a CBCF matrix via directly annealing silicon oxycarbide (SiOC) ceramic precursor. The synthesized multiscale reinforcements including microscale SiOC ceramics and nanoscale SiC nanowires are mainly attributed to the initial phase separation of SiOC phase and subsequent solid-phase reaction of SiO and C phases. Compared to SiOC/CBCF composite, the resulting 3D SiC nanowires/SiOC/CBCF hybrid structure exhibited high flexural/tensile strength and fractured strain due to the pull-out and bridging behavior of SiC nanowires. This one-step process supplied a feasible way to synthesize 3D SiC nanowires to reinforce and toughen SiOC-modified CBCF composite.  相似文献   

18.
《Ceramics International》2017,43(10):7424-7435
In this paper, flexible hydrophobic SiC ceramic nanofibers have been successfully fabricated via electrospinning and subsequent high temperature heat treatment. The synthesized SiC ceramic nanofibers show excellent flexibility without any breakage even under a bending angle of 142.6°, and high hydrophobicity with a water contact angle of 149.05°. The SiC nanofibers exhibit excellent electromagnetic (EM) wave absorption properties with an effective absorption bandwidth (reflection loss (RL) <−10 dB, 90% EM wave absorbed) of 4–18 GHz. The maximum reflection loss of SiC ceramic nanofibers reaches −19.4 dB at 5.84 GHz. In addition, the nanofibers are environmentally stable in 2 mol/L NaOH solution for 2 h and high temperature of 500 °C in air atmosphere. The excellent EM wave absorption performance, flexibility, hydrophobic properties, corrosion resistant properties in alkali environment and high temperature stability make SiC ceramic nanofibers to be a potential candidate for EM wave absorption used in harsh environment.  相似文献   

19.
《Ceramics International》2023,49(4):6368-6377
Nonmagnetic ceramics are ideal microwave absorbing materials used in high-temperature and oxidizing environments. However, low-frequency absorbing properties of this material are rarely reported because low-frequency absorbing requires nonmagnetic materials to have much higher permittivity. In this research, a series of three-dimensional architectures formed by SiC nanowires with different microstructures felt were fabricated to address this issue. The morphology of the SiCnw (linear, bamboo-shaped, and worm-like) dominated by the VLS growth mechanism can be manipulated by the silicon vapor concentration, which is governed by the vaporization temperature of the mixed silicon source (Si and SiO2) in different sintering processes. The spontaneously overlapped bamboo-shaped SiC nanowires in these felt enhance the permittivity and conductivity loss and produce multiple scattering effects on the incident EM waves, thus increasing the low-frequency wave absorption ability. The RLmin of the bamboo-shaped SiCnw felt reaches ?44.3 dB at 3.85 GHz with the corresponding EAB of 0.64 GHz (3.6–4.24 GHz) at a thickness of 3.5 mm. The density of the SiCnw felt is as low as 0.022 g/cm3 due to the high porosity (99.3%) of 3D networks, which fulfills lightweight requirements and highly efficient electromagnetic wave absorption.  相似文献   

20.
Polysiloxane loaded with SiC as inert filler, and Al as active filler, was pyrolyzed in nitrogen to fabricate SiOC composites, and the processing and properties of the filled SiOC composites were investigated. Adding SiC fillers could reduce the linear shrinkage of filler-free cured polysiloxane in order to obtain monolithic SiC/SiOC composites. The flexural strength of SiC/SiOC composites reached 201.3 MPa at a SiC filler content of 27.6 vol.%. However, SiC/SiOC composites exhibited poor oxidation resistance, thermal shock resistance and high temperature resistance. Al fillers could react with hydrocarbon generated during polysiloxane pyrolysis at 600 °C and N2 at 800 °C to form Al4C3 and AlN, respectively. The volume expansions resulting from these two reactions were in favor of the reduction in linear shrinkage and the improvement in flexural strength of SiC/SiOC composites. The flexural strength of Al-containing SiC/SiOC composites was 1.36 times that of SiC/SiOC composites without Al at an Al filler content of 20 vol.%. The addition of Al fillers remarkably improved the high temperature resistance and oxidation resistance of SiC/SiOC composites, but not thermal shock resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号