首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Particle size is the top cited physical property researchers report in The Canadian Journal of Chemical Engineering and among the top properties in all science disciplines. [1] Techniques to measure particle size distribution (PSD) include physical operations like sieving and sedimentation, and spectroscopic techniques like laser diffraction image analysis based on optical and electron microscopy, and elecro‐zone instruments. Here we concentrate on laser diffraction analysis (LDA) and review its basic principles, operations, limitations, uncertainties, and mention how it compares to other techniques. LDA is an instantaneous, user‐friendly, convenient, and non‐destructive method to assess PSD of inorganic powders. It measures the scattering angle and intensity of light after it passes through diluted particle dispersions suspended in either a gas or liquid. The Mie theory is an exact solution to resolve the diffraction intensity of light caused by particles that applies to while the Fraunhoffer approximation applies only to particles greater than 20 m. The 95 % confidence interval of five measurements of 56 m and 0.1 m irregularly shaped polyhedrons was . Based on a bibliometric analysis of LDA of the top 10 000 cited articles in 2016 and 2017, the major research clusters are: particle measurement, powder behaviour, pharmacy, comminution, and adsorption. Future work will continue to introduce more laser sources, combine multiple technologies, implement mobile light sources (dynamic light scattering), and better define characterize irregularly shaped particles.  相似文献   

2.
Mass transfer coefficients at the gas-liquid interface were investigated for different flow configuration systems, a stirred tank reactor and a gravity pipe. Computational fluid dynamics (CFD) simulations were performed for all tested experimental conditions. Since a poorly soluble gas (oxygen) was used, the overall mass transfer coefficient was clearly correlated to the hydrodynamic conditions in the liquid phase. However, a generic correlation between averaged interfacial liquid velocity and mass transfer coefficients was not found for both geometries. Finally, the averaged turbulent kinetic energy (TKE) at the interface is the most relevant parameter that was correlated to the mass transfer coefficient for both systems. The same relationship between oxygen mass transfer coefficient K L,O2 and TKE () can be applied for the two geometries investigated.  相似文献   

3.
Thermal programmed desorption (TPD) is a powerful technique for materials and catalysts characterization. By analyzing TPD curves, it is possible to calculate important parameters as the desorption activation energy, E d , that depends on the surface coverage (θ) by a nonlinear polynomial function, ie, . The Polanyi-Wigner equation, , can be used as theoretical basis to calculate this parameter, by a fitting regression procedure starting from experimental TPD data. Different degrees (k) for this polynomial equation and different initial values of the frequency factor A(θ) were considered and discussed to obtain the univocal value of desorption energy. Three different Pt and Co based catalysts, suitable for hydrogenation reactions, have been considered as case studies for the application and validation of the proposed calculation procedure.  相似文献   

4.
Snowflake, a highly symmetrical hexagram figure, is challenging to be expressed by chemistry/supramolecular chemistry due to the complex structure. Herein, we have constructed super snowflake supramolecules using terpyridine (tpy)‐based metal‐organic building blocks with tpy‐Ru(II)‐tpy and tpy‐Zn(II)‐tpy connectivities through stepwise strategies in high yield. The structures were characterized by multi‐dimensional mass spectrometry and multi‐dimensional NMR spectrometry. In order to address the stability/tolerance of our designed super snowflake structures, ligand exchange behaviors between different supramolecules with various arm length were fully investigated by mass spectrometry. The study revealed that three modes could exist in such binary systems, including full exchange, partial exchange and self‐sorting (no exchange) depending on the length difference of ligands.  相似文献   

5.
Recently immobilized enzymes have been widely used in industrial processes due to their outstanding advantages, such as high stability and recyclability; however, their kinetic behaviour is generally controlled by mass diffusion effects. Thus, in order to improve these enzymatic processes, a clear discernment between the kinetic and diffusion mechanisms that control the production of the metabolite require investigation. In practice, it is typical to establish apparent kinetics for immobilized enzyme operations, and the validity of the apparent kinetics is restricted to the studied cases. In this work, a new approach for mathematically describing the kinetic and diffusion mechanics in an immobilized biocatalyst bead is established, in which the fraction of residual enzymatic activity is included, and is defined as a measure of the active and available enzymes in the bead porous network. In addition, the diffusion and kinetic mechanisms are described by the effective diffusion coefficient and the free enzyme kinetics, since the porous network of the bead is assumed as the bioreaction volume. Therefore, free enzyme kinetics were determined from glucose to fructose bioconversion using a stirred tank reactor with free glucose-isomerase, in which substrate and enzyme concentrations and temperature were varied. The fraction of residual enzymatic activity () and the effective diffusion coefficient () were obtained from the isomerization of glucose to fructose using a stirred tank reactor with immobilized glucose-isomerase in calcium alginate beads at different substrate and enzyme concentrations. Finally, simulations were carried out to establish the bioreaction solid-phase characteristics that most significantly influence productivity.  相似文献   

6.
In this paper, we develop a novel robust control approach for discrete minimum and non-minimum phase systems via a combined data-driven virtual reference feedback tuning ( VRFT ) and internal model control (IMC) scheme. The first step in the conventional VRFT method controller design is the selection of the closed-loop reference model ( M z ), and M z selection is still an open problem. The integration of the IMC scheme and the VRFT method provides the advantage of flexibility in controller design due to the incorporation of the IMC filter. As a result, the proposed design method begins with the selection of M z and IMC filter. Unlike the standard VRFT method, the proposed combined VRFT and IMC design approach has the unique feature of taking into account a robustness property of dynamics, namely, maximum sensitivity ( M s ) as the design specification for the M z and IMC filter selection. Moreover, the proposed approach includes a robustness specification that resolves the trade-off between performance and robustness in real-time controller design. Furthermore, the robustness guarantee with plant uncertainties and controller fragility is elucidated. The proposed approach is validated using numerical simulations and experimental validation through the temperature control process. Compared to conventional VRFT controllers, experimental and simulation results show that the proposed controllers have less tracking error, minimize control effort, and improve robustness.  相似文献   

7.
This study proposes the idea of reducing the microphony effect and secondary pyroelectric coefficient in pyroelectric detectors by tuning the poling orientation. Mathematically, it has been shown that piezoelectric strain coefficients get altered by changing the poling direction. Eventually, for a couple of materials it has been demonstrated that microphony and secondary pyroelectric coefficient can be diminished by poling them at a given orientation. The poling angle nullifying secondary pyroelectric coefficient was found to be 58.2°, 47.1°, and 78.9° for (PZN-0.08PT), (PMN-PT), and (BCT-0.48BZT) respectively while no such value existed for (PZT-5A).  相似文献   

8.
An unplasticized poly(vinyl chloride) (U-PVC) pipe sample used in infrastructure applications in Brazil (nominal diameter DN 100, outside diameter 110 mm) was evaluated according to different fracture mechanics methodologies, including essential work of fracture (EWF) and other fracture toughness parameters such as the stress intensity factor and plane strain energy release rate . This pipe sample was also tested for the quality of processing (degree of gelation) via differential scanning calorimetry (DSC) and tensile strength. The comparative evaluation of different specimen configurations—curved specimens in three-point bending (CTPB) and full rings in tension (SNRT), in thicknesses varying from 5 to 30 mm, showed initial evidence of the suitability of ring-type specimens for the evaluation of EWF and . Results also indicate that the full ring geometry, at least in the present experimental setup, presents some drawbacks probably due to the storage of large amounts of elastic energy throughout the test. This fact leads to relevant deviations in both load–displacement behavior and results for strain energy release rate (), and the results found here will guide future research using full and split rings in different loading modes and improved experimental setups. It was also confirmed that the value of , determined by a modified Charpy test, is independent of the type of specimen tested, as long as the test mode and specimen width are the same. Both the experimental value of and the estimated value for the plane strain stress intensity factor () showed excellent agreement with values reported for other U-PVC compositions.  相似文献   

9.
Effects of doping of Y and sintering atmosphere on the dielectric properties of Sr1-1.5xYxTiO3 ceramics (SYT, x = 0-0.014) were systematically investigated. The SYT14 (x = 0.014) ceramic sintered in N2 attains a colossal permittivity (CP, Ɛr = 28 084@ 1kHz, 27 685@ 2MHz) and an ultralow dielectric loss (tanδ = 0.007@ 1kHz, 0.003@ 2MHz) at room temperature. Because of using of the A-site deficient, there are in SYT ceramics. Through the comprehensive analysis of dielectric responses, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and complex impedance data, it is proved that doping of Y promotes the formation of (Y3+ are located at Sr2+ site), (Y3+ are located at Ti4+ site), and Ti3+, and sintering in reducing atmosphere of N2 results in more (oxygen vacancy) and (strontium vacancy) generating in SYT ceramics. The defect dipoles, , , , , , and formed by introduced defects make charge carriers localized in SYT ceramics. The combined action of the massive defect dipoles is responsible for the ultralow tanδ and CP in SYT14 ceramics sintered in N2.  相似文献   

10.
We consider inference for the market model coefficients based on simple linear regression under a long memory stochastic volatility generating mechanism for the returns. We obtain limit theorems for the ordinary least squares (OLS) estimators of α and β in this framework. These theorems imply that the convergence rate of the OLS estimators is typically slower than if both the regressor and the predictor have long memory in volatility, where T is the sample size. The traditional standard errors of the OLS‐estimated intercept () and slope (), which disregard long memory in volatility, are typically too optimistic, and therefore the traditional t‐statistic for testing, say, α = 0 or β = 1, will diverge under the null hypothesis. We also obtain limit theorems (which imply slow convergence) for the estimated weights of the minimum variance portfolio and the optimal portfolio in the same framework. In addition, we propose and study the performance of a subsampling‐based approach to hypothesis testing for α and β. We conclude by noting that analogous results hold under more general conditions on long‐memory volatility models and state these general conditions which cover certain fractionally integrated exponential generalized autoregressive conditional heteroskedasticity (EGARCH) models.  相似文献   

11.
The power consumption of the agitator is a critical variable to consider in the design of a mixing system. It is generally evaluated through a dimensionless number known as the power number N p . Multiple empirical equations exist to calculate the power number based on the Reynolds number Re and dimensionless geometrical variables that characterize the tank, the impeller, and the height of the fluid. However, correlations perform poorly outside of the conditions in which they were established. We create a rich database of 100 k computational fluid dynamics (CFD) simulations. We simulate paddle and pitched blade turbines in unbaffled tanks from Re 1 to 100 and use an artificial neural network (ANN) to create a robust and accurate predictor of the power number. We perform a mesh sensitivity analysis to verify the precision of the N p values given by the CFD simulations. To sample the 100 k mixers by their geometrical and physical properties, we use the Latin hypercube sampling (LHS) method. We then normalize the data with a MinMax transformation to put all features in the same scale and thus avoid bias during the ANN's training. Using a grid search cross-validation, we find the best architecture of the ANN that prevents overfitting and underfitting. Finally, we quantify the performance of the ANN by extracting 30% of the database, predicting the N p using the ANN, and evaluating the mean absolute percentage error. The mean absolute error in the ANN prediction is 0.5%, and its accuracy surpasses correlations even for untrained geometries.  相似文献   

12.
This article reports the results of the extensional viscosity ( ) of polyolefins composites films. The test material was composed of ternary MDPE/iPP/CaCO3 composites with a calcium carbonate content of 48–72% by mass. The concentrations of the composites and reference materials that were PE‐MD/iPP mixtures are summarized in Table 1. For all materials the viscosity curves (rotational rheometer) and the change in mass flow rate were determined. Two types of investigated films were produced: cast films and blow films. The extensional viscosity of films (thickness ≈ 80 μm) was performed on a SER‐2 Universal Testing Platform. The influence of the addition of calcium carbonate, extrusion techniques and the direction of sample cut (MD and TD) to change the extensional viscosity were discussed. The extensional viscosity measurements ( ) were taken at a temperature of 140°C and for a strain rate (Hencky strain rate) of = 0.1, 0.2 and 0.5 s?1. POLYM. ENG. SCI., 59:E155–E163, 2019. © 2018 Society of Plastics Engineers  相似文献   

13.
Values of and order parameters derived from NMR relaxation measurements on proteins cannot be used straightforwardly to determine protein structure because they cannot be related to a single protein structure, but are defined in terms of an average over a conformational ensemble. Molecular dynamics simulation can generate a conformational ensemble and thus can be used to restrain and order parameters towards experimentally derived target values (exp) and (exp). Application of and order-parameter restraining MD simulation to bond vectors in 63 side chains of the protein hen egg white lysozyme using 51 (exp) target values and 28 (exp) target values shows that a conformational ensemble compatible with the experimentally derived data can be obtained by using this technique. It is observed that order-parameter restraining of C−H bonds in methyl groups is less reliable than order-parameter restraining because of the possibly less valid assumptions and approximations used to derive experimental (exp) values from NMR relaxation measurements and the necessity to adopt the assumption of uniform rotational motion of methyl C−H bonds around their symmetry axis and of the independence of these motions from each other. The restrained simulations demonstrate that side chains on the protein surface are highly dynamic. Any hydrogen bonds they form and that appear in any of four different crystal structures, are fluctuating with short lifetimes in solution.  相似文献   

14.
Antiferroelectric (AFE) ceramics are promising for applications in high-power density capacitors, transducers, etc. The forward switching field and backward switching field are critical performance indicators for AFE ceramics, and the coupling between the structure transition and domain orientation makes them different from the coercive field of ferroelectric (FE). Moreover, in practical applications, AFE ceramics are often required to operate at varying frequencies. However, systematic studies regarding the frequency dependence of and are insufficient. In this work, (PLZST) AFE ceramic was fabricated, and two empirical formulas (, ) were proposed to predict the frequency dependence of and . The formulas are based on the electric field–induced phase transition characteristics of AFE and the Kolmogorov–Avrami–Ishibashi domain nucleation-switching model. Furthermore, the dynamic hysteresis loops of PLZST at various frequencies (1–1000 Hz) and temperatures (–) were investigated. The results show that the electric field–induced phase transition of AFE ceramic is dominated by the coupling between the structural transition and domain orientation. The domain orientation hinders the structure transition, leading to an increase in and a decrease in as the frequency of applied electric field increases. Meanwhile, the domain growth process is affected by the structure of AFE, and the value of (domain growth dimensionality) increases with the stability of the AFE structure. For comparison, (PLBZST) relaxor FE ceramic was fabricated. Due to the high mobility of the microdomain, the dynamic hysteresis loop of PLBZST ceramic exhibits excellent frequency stability. The charge–discharge experiment with an ultrahigh equivalent frequency (100 kHz) was performed to investigate the frequency stability of energy release of PLZST and PLBZST. The results may provide guidance for research pertaining to ceramic capacitors with high-power density and high-frequency stability.  相似文献   

15.
In the present paper, two gas‐liquid stirred tanks, one agitated by a radial impeller and another by an axial impeller, are modelled using the open‐source computational fluid dynamic (CFD) package OpenFOAM (open source field operation and manipulation). The combined effect of the bubble break‐up and coalescence in the tank is considered by a population balance model (PBM) called extended quadrature method of moments (EQMOM). The three‐dimensional simulation is made using a multiple reference frame (MRF), a well‐established method for the modelling of mixers. Dispersed gas and bubble dynamics in the turbulent flow are modelled using the Eulerian‐Eulerian approach (E‐E) with mixture k‐epsilon turbulent model and the modified Tomiyama drag coefficient for the momentum exchange. The model is developed to predict the spatial distribution of gas phase fraction, Sauter mean bubble diameter (), number density function (NDF), dissolved oxygen (DO) evolution, and flow structure. The numerical results are compared with experimental data and a fair agreement is achieved. The results of the axial impeller are discussed based on four impeller rotational speeds with different volumetric mass transfer coefficients.  相似文献   

16.
To understand the role of phosphate ester dispersant, we investigated the rheology of a BaTiO slurry. For the model case, a coarse-grain molecular dynamics (CGMD) simulation was performed with the butyral polymer didodecyl hydrogen phosphate (DHP) in the toluene/ethanol solvent. By systematically analyzing the effect of DHP from an atomic-scale first principle and from all-atom MD to microscale CGMD simulation, we investigated how the adsorption of a DHP dispersant on a BaTiO surface affects the microstructure rheology of a BaTiO slurry. The first-principle and all-atom MD simulation suggests that DHP molecules prefer to locate near the BaTiO surface. CGMD simulation shows a reduction in viscosity with an increase in dispersants, suggesting that the dispersant population near the BaTiO surface plays a key role in controlling the rheology of the BaTiO slurry. In this study, we propose an approach for understanding the BaTiO slurry with molecular-level simulations, which would be a useful tool for efficient optimization of slurry preparation.  相似文献   

17.
The temperature dependences of the electrical conductivity , Seebeck coefficient , and heat capacity Cp(T) of polycrystalline samples of Bi2Te3, Bi2Te3+1%CuI, and Bi2Te3+1%(CuI+1/2Pb) are investigated in the temperature range below room temperature. Based on the temperature dependences of all investigated physical properties, it is discovered that phase transition occurs at 120–200 K. Investigation of single crystals shows that anomalies in the electrical resistivity occur only across the crystal growth axis (across the well-conducting Bi–Te plane). Investigation of the low-temperature dependence of electrical conductivity shows that all polycrystalline samples exhibit quasi-two-dimensional electron transport. Additionally, quasi-two-dimensional transport is detected in single crystals based on anisotropy analysis (where is the resistivity along the crystal growth axis, and is resistivity across the crystal growth axis) and temperature dependence below 50 K. The Fermi energy is estimated using the temperature dependence of . It is discovered that an increase in at T > 200 K is associated with the phase transition. For single-crystal samples, the maximum thermoelectric figure of merit ZT, as observed along the crystal growth axis, increases with doping. A maximum ZT value of ∼1.1 is observed for the Bi2Te3+1%(CuI+1/2Pb) sample at room temperature ().  相似文献   

18.
Fouling mitigation in a crossflow filtration system using chaotic advection is numerically studied. A barrier-embedded partitioned pipe mixer (BPPM) is selected as a static mixer, creating chaotic advection in a laminar flow regime. Mixing characteristics are controlled via two design parameters, the mixing protocol and the dimensionless barrier height (β). The average dimensionless concentration boundary layer thickness () and the surface-averaged dimensionless wall concentration () dramatically decrease with the introduction of the BPPM, incorporating a chaotic flow system. and decrease as β increases, and the largest reduction of is observed in the counter-rotational protocol. A semi-ring configuration is revealed to be the most appropriate configuration to characterize mixing near the membrane surface. It is found that a filtration system with a globally chaotic flow shows the best mixing performance and the largest reduction of fouling.  相似文献   

19.
Fixed beds are widely used in the chemical and process industry due to their relatively simple yet effective performance. Determining the radial heat transfer at the wall in a fixed bed is crucial to predict the performance of columns. Heat transfer parameters often need to be obtained experimentally. Various Nusselt Nu w versus Reynolds Re p correlations in literature show considerable scatter and discrepancies. The tube-to-particle diameter ratio D t D p and boundary conditions on the particle surface have been understood to affect heat transfer near the wall by virtue of influence on the near-wall porosity and mixing. In this work, a fixed bed consisting of mono-disperse particles is generated via gravity-forced sedimentation modelling utilizing the discrete element method for a D t D p ratio of 3.3. The system is meshed and imported in a computational fluid dynamics (CFD) solver. Fluid inlet velocity is varied to get Re p 1 , 1500 corresponding to the laminar and turbulent flow regimes. The particles are treated as boundaries with Dirichlet, Neumann, and Robin boundary conditions applied for the closure of energy balance. Another set of simulations is run with particles modelled as solids with varying thermal conductivities ( k s / k f ). The heat flux and volume-averaged fluid temperature calculated during post-processing are used to determine the wall heat transfer coefficient and, subsequently, the wall Nu number. Fifteen Nu w versus Re p correlations are compiled and analyzed. A new semi-empirical correlation for the wall Nusselt number has been developed for a fixed bed packed with monodisperse spheres for D t D p = 3.3 and results compared with data published in literature. Additionally, the impact of buoyancy effect on the wall Nusselt number has been studied.  相似文献   

20.
When incorporating actinides into zirconolite for high-level radioactive waste immobilization, Al3+ and Fe3+ ions generally act as charge compensators. In this study, we rationally designed a series of (Ln = La, Nd, Gd, Ho, Yb) to unravel the dopant solubility and evolutions of the crystalline phase and local environment of cations through synchrotron X-ray methods. It was found that single zirconolite phase is difficult to obtain and the fraction of perovskite have an increase with x from 0.1 to 0.9 in . Formation of both zirconolite-2M and zirconolite-3O phases was observed in and . Phase transformation from zirconolite-2M to 3O occurs at x = 0.7 for while x = 0.9 for . The solubility of and to form single zirconolite-2M can reach to 0.9 f.u. and 0.7 f.u., respectively. The evolution of lattice parameters of zirconolite in is greatly related to the ionic radii of cations and substitution mechanism among the cations. X-ray absorption near edge spectroscopy revealed that Fe3+ ions replace both five- and six-coordinated Ti sites and the ratio of TiO5 to TiO6 decreases when increasing dopant concentration in the . For the local environment of Zr4+, the major form is ZrO7 with a trace of ZrO8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号