首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integration of electrospinning and traditional needle punching technologies were demonstrated for fabricating a new three-dimensional (3D) scaffold to enhance the cellular infiltration. This 3D scaffold combined the advantages of electrospun polycaprolactone (PCL) nanofibrous mats and carded chitosan microfibrous webs to construct hierarchically porous, which have three regions: the large pores (about 500 μm) on the nanofibrous mats generated by needle punching, could induce the massive cells infiltration into the inner scaffold; the small pores (30–200 μm) of the microfibrous webs allowed space for continuous cellular infiltration; and the inherent smaller pores of the nanofibrous mats (1–17 μm) which play a key role in providing a platforms for cell adhesion and proliferation. In addition, the 3D scaffold exhibited appropriate mechanical properties and significantly high initial cell attachment, proliferation, and infiltration, suggesting that its great potential in tissue engineering. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47046  相似文献   

2.
To achieve excellent biofunctionality of Bombyx mori silk fibroin (SF), we explored a novel hybridization method to combine the unique properties of SF with poly(ε‐caprolactone) (PCL) electrospun fibers. The hybrid electrospun fibers demonstrate excellent hydrophilicity and biocompatibility that are important to tissue engineering applications. The biomimetic fibrous structure was fabricated by conventional electrospinning of PCL. The individual surfaces of PCL electrospun fibers were coated with silk fibroin protein using a lyophilization technique. The SF coating layers were durable which were further developed by surface modification with fibronectin to improve their biological function. The hybrid electrospun fibers show excellent support for normal human dermal fibroblast (NHDF) cells adhesion and proliferation than neat PCL fibers, while the surface‐modified hybrid electrospun fibers show significantly enhanced proliferation of NHDF cells on their surface. This study indicates the new opportunity of fabrication technique that can construct a biomimetic fibrous structure while the original function as a biomaterial remained existing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41653.  相似文献   

3.
Poly(?‐caprolactone) (PCL)/gelatin (GE) nanofiber scaffolds with varying concentrations of lanthanum chloride (LaCl3, from 0 to 25 mM) were fabricated by electrospinning. The scaffolds were characterized by scanning electron microscopy, contact angle and porosity measurements, mechanical strength tests, and in vitro degradation studies. In vitro cytotoxicity and cell adhesion and proliferation studies were performed to assess the biocompatibility of the scaffolds, and in vivo wound healing studies were conducted to assess scaffold applications in the clinic. All prepared scaffolds were noncytotoxic, and the growth of adipose tissue–derived stem cells on LaCl3‐containing scaffolds was better than on the pure PCL/GE scaffold. Cell proliferation studies showed the greatest cell growth in the PCL/GE/LaCl3 scaffolds. Further, in vivo studies proved that the PCL/GE/LaCl3 scaffolds can promote wound healing. The results suggest that nanofiber scaffolds containing LaCl3 promote cell proliferation and have good biocompatibility, and thus potential for application in the treatment of skin wounds. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46672.  相似文献   

4.
In recent years, solution electrospinning has attracted the interest of researchers due to the possibility to design nanofibrous scaffolds with large surface area to volume ratios. Polycaprolactone (PCL), because of its biocompatibility and easy processability, has been widely used to develop electrospun structures for tissue engineering. However, the use of organic solvents and the poor PCL solution stability still hinder the development of the solution electrospinning process. The relatively benign glacial acetic acid (GAC) as a solvent of PCL was used to fabricate microfibrous fibers or beaded fibers. Thus, ethylene carbonate (EC) as a nontoxic assistant solvent was added to the PCL/GAC solution to successfully fabricate electrospun nanofibrous PCL scaffolds. The stability of the PCL/GAC/EC solution system was demonstrated as the viscosity, which showed no significant change during 48 h. The ultrafine PCL fiber diameter decreased as EC concentration was increased from 0 to 9 vol% and started to slightly increase when EC concentration increased beyond 9 vol%. MTT assay evidenced that MC3T3-E1 cells on the nanofibrous PCL scaffolds exhibited a better enhancement on cell proliferation. In summary, EC was added in PCL/GAC to establish a stable and low toxic solution electrospinning system, which provides promising strategy in tissue engineering field. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48387.  相似文献   

5.
Tissue‐engineered scaffolds require an adequate three‐dimensional (3‐D) structure for cell growth and attachment. Solid freeform fabrication can provide the interconnected pore to induce the cell ingrowth, and electrospinning technique can make the nanofiber web with high surface for cell attachment. In this study, 3‐D polycaprolactone (PCL) scaffolds were fabricated using a rapid prototyping plotting system coupled with an electrospinning apparatus. Scanning electron micrographs showed that these hybrid scaffolds had a regular microfiber structure with interconnected pores and a nanofiber distribution appropriate for cell attachment. Scaffolds were seeded with MG63 cells for in vitro study and implanted in the tibia of rabbit for in vivo study. The resulting structure also facilitated cell adhesion, proliferation, and differentiation as evidenced by biochemical analyses and confocal microscopy. The hybrid scaffolds also exhibited good biocompatibility and osteoconductivity in animal studies. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

6.
Polymer blending is one of the most effective methods for providing new, desirable biocomposites for tissue‐engineering applications. In this study, electrospun poly(L ‐lactide)/poly(ε‐caprolactone) (PLLA/PCL) blend fibrous membranes with defect‐free morphology and uniform diameter were optimally prepared by a 1 : 1 ratio of PLLA/PCL blend under a solution concentration of 10 wt %, an applied voltage of 20 kV, and a tip‐to‐collector distance of 15 cm. The fibrous membranes also showed a porous structure and high ductility. Because of the rapid solidification of polymer solution during electrospinning, the crystallinity of electrospun PLLA/PCL blend fibers was much lower than that of the PLLA/PCL blend cast film. To obtain an initial understanding of biocompatibility, adipose‐derived stem cells (ADSCs) were used as seed cells to assess the cellular response, including morphology, proliferation, viability, attachment, and multilineage differentiation on the PLLA/PCL blend fibrous scaffold. Because of the good biocompatibility and nontoxic effect on ADSCs, the PLLA/PCL blend electrospun fibrous membrane provided a high‐performance scaffold for feasible application in tissue engineering using ADSCs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Skin injuries are an urgent health issue, which raises a great concern in the clinic. Although numerous strategies have been proposed to fabricate skin substitutes for treatment of wounds over the past several decades, fabricating an ideal skin substitute to replace the damaged one can still be a problem. In this study, a novel biomimetic 3D composite skin scaffold is fabricated by combining electrohydrodynamic (EHD) jetting, electrospinning, and coating techniques. Here, the first polycaprolactone (PCL) porous structure is produced by the EHD jetting. Next, the second polylactic acid (PLA) membrane consisted of nanoscale fibers is prepared on the PCL porous structure via the electrospinning. The PCL porous structure and PLA fibers membrane can mimic the dermis and epidermis layer, respectively. Furthermore, gelatin is used as coating solution to enhance the biocompatibility of the scaffold. The structure and morphology of the fabricated scaffolds are analyzed, and the mechanical properties are investigated as well. Moreover, the in vitro and in vivo experiments demonstrate the biocompatibility of the materials and the fabrication process. In conclusion, these results demonstrate that the composite scaffold is effective and holds great potential for skin regeneration in the clinic.  相似文献   

8.
Considerable efforts have been devoted toward the development of electrospun scaffolds based on poly(ε‐caprolactone) (PCL) for bone tissue engineering. However, most of previous scaffolds have lacked the structural and mechanical strength to engineer bone tissue constructs with suitable biological functions. Here, we developed bioactive and relatively robust hybrid scaffolds composed of diopside nanopowder embedded PCL electrospun nanofibers. Incorporation of various concentrations of diopside nanopowder from 0 to 3 wt % within the PCL scaffolds notably improved tensile strength (eight‐fold) and elastic modulus (two‐fold). Moreover, the addition of diopside nanopowder significantly improved bioactivity and degradation rate compared to pure PCL scaffold which might be due to their superior hydrophilicity. We investigated the proliferation and spreading of SAOS‐II cells on electrospun scaffolds. Notably, electrospun PCL‐diopside scaffolds induced significantly enhanced cell proliferation and spreading. Overall, we concluded that PCL‐diopside scaffold could potentially be used to develop clinically relevant constructs for bone tissue engineering. However, the extended in vivo studies are essential to evaluate the role of PCL‐diopside fibrous scaffolds on the new bone growth and regeneration. Therefore, in vivo studies will be the subject of our future work. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44433.  相似文献   

9.
Nonwoven membranes of poly(ε-caprolactone) (PCL) and chitosan (CS) were produced according to the two methods: by blending the polymers in solution followed by electrospinning – polymer blending method – and by simultaneous deposition of fibers electrospun from separate solutions – fiber blending (FB) method. The two production methods were compared by assessing fiber morphology, mass loss, swelling degree, water contact angle, and mechanical properties of the resulting electrospun membranes. Furthermore, the adhesion, proliferation, and morphology of human dermal fibroblasts on the eight types of scaffold produced were evaluated to assess if the blending method used would influence cell–scaffold interaction. Cell adhesion to the different scaffolds lied in the interval 40–60%, with the CS scaffold presenting the lowest value. Interestingly, cell proliferation was the same when comparing polymer blending and FB scaffolds having 3:1 or 1:3 PCL/CS ratios but very different when the ratio was 1:1 – the FB scaffold sustained a proliferation rate double that of the polymer blending scaffold. This work shows that, when blending polymers to improve the properties of a scaffold for tissue engineering or 3D cell culture, their spatial distribution may considerably affect scaffold's properties and should be considered as another parameter requiring optimization. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47191.  相似文献   

10.
Components of gelatin/polycaprolactone (PCL) electrospun scaffolds are released to surrounding media and cause osmotic changes that adversely affect cell viability and proliferation. In this study, the physiological properties of gelatin/PCL scaffolds were investigated by qRT‐PCR and by performing cellular studies on HEK 293 cells. Components released from gelatin/PCL scaffolds were found to induce osmotic stress response in these cells. However, osmotic stress was inhibited by adding fetal bovine serum (FBS) to scaffolds. In addition, focal adhesion related genes were found to be up‐regulated in HEK 293 cells on gelatin/PCL/20% FBS scaffolds, and this induced the down‐regulations of cell‐death related genes. Furthermore, the inclusion of 20% FBS improved the viabilities of HEK 293 cells on gelatin/PCL scaffolds. This study indicates that adding FBS to gelatin/PCL scaffolds improves scaffold bio‐affinity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Hybrid electrospun nanofibers of polycaprolactone (PCL)/gelatin are considered as drug-delivery systems for increasing the treatment efficacy in superficial (skin) wounds. Continuous delivery of therapeutic agents, skin extracellular matrix similarity, management of wound exudate, and antimicrobial barrier effect are the major advantages of electrospun nanofibers in skin applications. Additionally, combining the favorable properties of PCL and gelatin, regarding their biocompatibility, biodegradability and mechanical performance have been revealed promising parameters to be considered for blend in hybrid structures. However, the usual optimization protocol of nanofibers’ production in electrospinning is based on the observation of one-variable-at-time being this methodology expensive and time-consuming. Therefore, in this research work, a statistical model based on four input variables namely, the flow rate, the needle-working distance, the applied voltage, and the ratio of PCL in the solution, is developed to predict the behavior of nanofibers. The performance of nanofibers is monitored by measurements of fiber's diameter, mesh's thickness, and mesh's permeability. Overall, the model showed to be statistically significant (p-value < 0.05) and an independent analysis validated the predicted response for optimal condition. Finally, a delivery study is performed to evaluate the electrospun mesh performance as a drug carrier.  相似文献   

12.
Practical application to three‐dimensional (3‐D) tissue culture has been limited by the structural restriction of two‐dimensional (2‐D) nature of electrospun nanofiber mat. In this study, for constructing 3‐D nanofibrous structure as real 3‐D tissue engineering scaffold, we developed new fabrication process with silk fibroin (SF) by electrospinning and evaluated the features of this SF nanofiber scaffold (SFNS) through morphological and cell‐culture analyses. Foam type of the SFNS exhibited high porosity as well as large pores and its cell proliferation well occurred inside (inner spaces of pores), which makes this suitable for 3‐D cell‐culture scaffold. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
Bone tissue engineering is a rapidly developing, minimally invasive technique for regenerating lost bone with the aid of biomaterial scaffolds that mimic the structure and function of the extracellular matrix (ECM). Recently, scaffolds made of electrospun fibers have aroused interest due to their similarity to the ECM, and high porosity. Hyaluronic acid (HA) is an abundant component of the ECM and an attractive material for use in regenerative medicine; however, its processability by electrospinning is poor, and it must be used in combination with another polymer. Here, we used electrospinning to fabricate a composite scaffold with a core/shell morphology composed of polycaprolactone (PCL) polymer and HA and incorporating a short self-assembling peptide. The peptide includes the arginine-glycine-aspartic acid (RGD) motif and supports cellular attachment based on molecular recognition. Electron microscopy imaging demonstrated that the fibrous network of the scaffold resembles the ECM structure. In vitro biocompatibility assays revealed that MC3T3-E1 preosteoblasts adhered well to the scaffold and proliferated, with significant osteogenic differentiation and calcium mineralization. Our work emphasizes the potential of this multi-component approach by which electrospinning, molecular self-assembly, and molecular recognition motifs are combined, to generate a leading candidate to serve as a scaffold for bone tissue engineering.  相似文献   

14.
Electrospinning of a poly(ε‐caprolactone) (PCL)/lactic acid (LA) blend was investigated to fabricate electrospun PCL fibers with improved biodegradability and biocompatibility for biomedical applications. Simple blending of PCL solution with various amounts of LA was used for electrospinning, and the physicochemical properties of the as‐fabricated mat were evaluated using various techniques. Scanning electron microscopy showed that fiber diameter decreased with increasing amount of LA. Fourier transform infrared spectroscopy and thermogravimetric analysis also revealed that LA was successfully incorporated in PCL fibers. The presence of LA can accelerate the biodegradation of PCL fibers and enhance the hydrophilicity of a membrane. The adhesion, viability and proliferation properties of osteoblast cells on the PCL/LA composite fibers were analyzed using in vitro cell compatibility tests which showed that LA can increase the cell compatibility of PCL fibers. Additionally, subsequent conversion of LA into calcium lactate by neutralization with calcium base can provide Ca2+ ions on the fiber surface to promote the nucleation of CaPO4 particles. © 2013 Society of Chemical Industry  相似文献   

15.
The adhesion of L929 cells to poly(?‐caprolactone) (PCL) nanofibers was successfully improved via coating with polyelectrolyte multilayer thin films (PEMs), which enhanced the potential of this material as a scaffold in tissue engineering applications. With the electrostatic self‐assembly technique, poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium 4‐styrene sulfonate) (PSS) were formed as four‐bilayer PEMs on electrospun PCL nanofiber mats. Because PDADMAC and PSS are strong polyelectrolytes, they provided stable films with good adhesion on the fibers within a wide pH range suitable for the subsequent processes and conditions. PDADMAC and gelatin were also constructed as four‐bilayer PEMs on top of the PDADMAC‐ and PSS‐coated nanofibers with the expectation that the gelatin would improve the cell adhesion. L929 cells from mouse fibroblasts were then seeded on both uncoated and coated scaffolds to study the cytocompatibility and in vitro cell behavior. It was revealed by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay that both the uncoated and coated nanofiber mats were nontoxic as the cell viability was comparable to that of those cultured in the serum‐free medium that was used as a control. The MTT assay also demonstrated that cells proliferated more efficiently on the coated nanofibers than those on the uncoated ones during the 48‐h culture period. As observed by scanning electron microscopy, the cells spread well on the coated nanofibers, especially when gelatin was incorporated. The surface modification of PCL nanofiber mats described in this research is therefore an effective technique for improving cell adhesion. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Antimicrobial nanofibers of poly(?‐caprolactone) (PCL) were prepared by electrospinning of a PCL solution with small amounts of silver‐loaded zirconium phosphate nanoparticles (nanoAgZ) for potential use in wound dressing applications. The electrospun nanoAgZ‐containing PCL nanofibers were characterized using field emission scanning electron microscopy, energy dispersive X‐ray spectrum (EDX), X‐ray diffraction analysis (XRD), antimicrobial tests, and biocompatibility tests. The SEM, EDX, and XRD investigations of the electrospun fibers confirmed that silver‐containing nanoparticles were incorporated and well dispersed in smooth and beadless PCL nanofibers. The results of the antimicrobial tests showed that these fibers have maintained the strong killing abilities of Ag+ existed in the nanoAgZ against the tested bacteria strains and discoloration has not been observed for the nanofibers. To test the biocompatibility of nanofibers as potential wound dressings, primary human dermal fibroblasts (HDFs) were cultured on the nanofibrous mats. The cultured cells were evaluated in terms of cell proliferation and morphology. The results indicated that the cells attached and proliferated as continuous layers on the nanoAgZ‐containing nanofibers and maintained the healthy morphology of HDFs. The earlier results suggested that nanoAgZ‐containing fibers may be expected to be a novel material for potential wound dressing applications because of the significant bacteriostatic activities and good biocompatibility. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
A series of nanofibrous scaffolds were prepared by electrospinning of poly(vinyl alcohol) (PVA)/gelatin aqueous solution. PVA and gelatin was dissolved in pure water and blended in full range, then being electrospun to prepared nanofibers, followed by being crosslinked with glutaraldehyde vapor and heat treatment to form nanofibrous scaffold. Field emission scanning electron microscope (FESEM) images of the nanofibers manifested that the fiber average diameters decreased from 290 to 90 nm with the increasing of gelatin. In vitro degradation rates of the nanofibers were also correlated with the composition and physical properties of electrospinning solutions. Cytocompatibility of the scaffolds was evaluated by cells morphology and MTT assay. The FESEM images revealed that NIH 3T3 fibroblasts spread and elongated actively on the scaffolds with spindle‐like and star‐type shape. The results of cell attachment and proliferation on the nanofibrous scaffolds suggested that the cytotoxicity of all samples are grade 1 or grade 0, indicating that the material had sound biosafety as biomaterials. Compared with pure PVA and gelatin scaffolds, the hybrid ones possess improved biocompatibility and controllability. These results indicate that the PVA/gelatin nanofibrous have potential as skin scaffolds or wound dressing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Hydroxyapatite (HA), the bone mineral and Cissus quadrangularis (CQ), a medicinal plant with osteogenic activity, are attaining increasing interest as a potential therapeutic agent for enhanced bone tissue regeneration. In the present study a synergistic effect of these two agents were analyzed by fabricating PCL‐CQ‐HA nanofibrous scaffolds by electrospinning and compared with PCL‐CQ and PCL (control) nanofibrous scaffolds. Morphology, composition, hydrophilicity, and mechanical properties of the electrospun PCL, PCL‐CQ, PCL‐CQ‐HA nanofibrous scaffolds were examined by Field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), Contact angle and Tensile tests, respectively. The response of human foetal osteoblast cells on these scaffolds were evaluated using MTS assay, alkaline phosphatase activity, alizarin red staining, and osteocalcin expression for bone tissue regeneration. While the observed cellular response to both groups of scaffolds was better than for the control PCL scaffold, the PCL‐CQ‐HA nanofibrous scaffolds provided the most favorable substrate for cell proliferation and mineralization. The results showed that PCL‐CQ‐HA nanofibrous scaffolds had appropriate surface roughness for the osteoblast adhesion, proliferation, and mineralization comparing with other scaffolds. The observed investigation of physicochemical and biological properties suggests that the CQ‐HA loaded PCL nanofibrous scaffolds serve as a potential biocomposite material for bone tissue engineering. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39835.  相似文献   

19.
In this study, amphiphilic poly(ε‐caprolactone)–pluronic–poly(ε‐caprolactone) (PCL–pluronic–PCL, PCFC) copolymers were synthesized by ring‐opening copolymerization and then reacted with isophorone diisocyanate to form polyurethane (PU) copolymers. The molecular weight of the PU copolymers was measured by gel permeation chromatography, and the chemical structure was analyzed by 1H‐nuclear magnetic resonance and Fourier transform infrared spectra. Then, the PU copolymers were processed into fibrous scaffolds by the electrospinning technology. The morphology, surface wettability, mechanical strength, and cytotoxicity of the obtained PU fibrous mats were investigated by scanning electron microscopy, water contact angle analysis, tensile test, and MTT analysis. The results show that the molecular weights of PCFC and PU copolymers significantly affected the physicochemical properties of electrospun PU nanofibers. Moreover, their good in vitro biocompatibility showed that the as‐prepared PU nanofibers have great potential for applications in tissue engineering. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43643.  相似文献   

20.
Large‐scale superhydrophobic composite films with enhanced tensile properties were prepared by multinozzle conveyor belt electrospinning. First, a strategy of conveyor belt electrospinning was introduced for large‐scale fabrication since the conveyor belt can expand the electrospinning area unlimitedly. During the electrospinning (or electrospraying) process, certain kinds of fibers are combined on the conveyor belt in one electrospinning (or electrospraying) step. The superhydrophobicity of electrospun film can be achieved by the presence of PS beads and bead‐on‐string PVDF fibers, while submicron PAN fibers are responsible for the improvement of mechanical properties. The result shows that CA value of the surface comprising of PS beads and bead‐on‐string PVDF fibers could reach up to 155.0°. As the submicron PAN fibers increased, the value of CA decreased, changing from 155.0° to 140.0°, meanwhile the tensile strength of composite film was enhanced from 1.14 to 4.12 MPa correspondingly which is beneficial to putting the films into practice. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39735.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号