首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Carbon-coated SnO2 nanoparticles were prepared by a novel facile route using commercial SnO2 nanoparticles treated with concentrated sulfuric acid in the presence of sucrose at room temperature and ambient pressure. The key features of this method are the simple procedure, low energy consumption, and inexpensive and non-toxic source materials. As-prepared core/shell nanoparticles were characterized by X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The electrochemical measurements showed that the carbon-coated SnO2 nanoparticles with 10% carbon and using carboxymethyl cellulose (CMC) as a binder displayed the best electrochemical performance with the highest specific capacity of 502 mAh g−1 after 50 cycles at a current density of 100 mA g−1. In addition, owing to the water solvability of CMC, the usage of CMC as binder makes the whole electrode fabrication process cheaper and more environmental friendly.  相似文献   

2.
Nano‐sized cadmium oxide (CdO) was synthesized using a sol–gel method and mixed with poly(vinyl chloride) (PVC). X‐ray diffraction and high‐resolution transmission electron microscopy measurements indicated that the average particle size of the CdO is about 70.18 nm. Scanning electron microscopy images revealed a good dispersion of CdO nanoparticles on the surface of the PVC films. The optical energy band gap (Eg) showed a decrease from 5.08 to 4.88 eV with increasing the CdO content. The refractive index dispersion of the nanocomposite films was found to obey the single oscillator model. The dispersion parameters were changed by CdO incorporation. According to the frequency and temperature dependence of the dielectric constant (ε′), the observed αa‐relaxation peaks were assigned to the micro‐Brownian motion of the polymer main chains. The influence of CdO nanoparticles content on the ac conductivity and the activation energy of PVC nanocomposite films were discussed. It was found that both dielectric and optical properties were reinforced by the adding of CdO nanoparticles to the PVC matrix. Finally, the results of the present system are compared with those of similar materials. POLYM. COMPOS., 35:1842–1851, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
氯化镁溶液氨气鼓泡反应制备纳米氢氧化镁   总被引:2,自引:1,他引:2       下载免费PDF全文
范天博  李雪  马超  刘云义 《化工学报》2010,61(11):3025-3032
引言 氢氧化镁(magnesium hydroxide,MH)具有分解温度较高、热稳定性好、无毒、无烟及抑烟等特点,适合作为无机添加型阻燃剂,国外已有六十余年的研究与生产历史[1].MH也是制备高纯MgO的主要原料[2-5],同时作为酸性废水的中和剂、重金属废水的吸附剂及烟气脱硫剂,在绿色环保领域应用广泛.  相似文献   

4.
The in situ electrochemical deposition of nanostructured MoSx (x = 1.5–1.7) based thin films on various substrates from aqueous solutions is reported. The as-deposited amorphous films transform on annealing into crystalline ones as revealed by a stepwise high temperature X-ray diffraction (XRD). Both Raman spectroscopy and XRD crystal structure analyses confirmed the formation of inorganic fullerene-MoSx nanoparticles (IF-MoSx). The as-deposited thin films have a featureless surface morphology, but after annealing either a nanotube or a nanorod structure along with numerous smaller nanoballs appear at the surface. An investigation by transmission electron microscopy unearths the presence of nanoballs, nanoribbons, and nanotubes throughout the annealed MoSx thin films. The size of the nanoballs is in the range of 5–10 nm. The nanotubes have a diameter of 10–400 nm, and a length of up to several micrometers as evidenced by SEM. The catalytic effect of transition metals on the growth of nanotubes is noticed. The temperature-induced transformation from amorphous to crystalline structured MoSx films results in a large lowering of the coefficient of friction under sliding against corundum in ambient air of 50% relative humidity.  相似文献   

5.
Cadmium selenide (CdSe) nanoparticles were synthesized through colloidal method in aqueous medium using the reaction intermediates selenium nanorods as selenium source. Trigonal selenium nanorods (t-Se) were synthesized in water by the reduction method in the presence of sodium borohydride at 60?°C using sodium selenite (Na2SeO3) as selenium source. These selenium nanorods were further utilized to synthesis cadmium selenide nanoparticles at 100?°C in water. The synthesized nanorods and nanoparticles were characterized using XRD, SEM, TEM and XPS analysis. X-ray diffraction (XRD) analysis shown that the nanorods possess trigonal phase while the nanoparticles possess a cubic zinc blende structure. Scanning electron microscope (SEM) analysis of the prepared hexagonal shaped nanorods reveals the diameter of the nanorods are about 150 nm. Transmission electron microscopy (TEM) analysis shows the size of the synthesized CdSe nanoparticles are about 4–8 nm. X-ray photoelectron spectroscopy (XPS) analysis illustrates the presence of respective elements Cd, Se with its corresponding oxidation states. The activity of nano selenium rods in aqueous solution during the conversion of cadmium selenide nanoparticles was discussed.  相似文献   

6.
Because of the sizes of the pore throat are on the nanometer scale, nanoparticles with sizes on the nanoscale have been developed as candidates for plugging materials during drilling in shale formation. In this study, Fe3O4 nanoparticles were prepared by a coprecipitation method, and then, Fe3O4/poly(acrylic acid) (PAA) hybrid nanoparticles were obtained through the modification of the Fe3O4 nanoparticles with PAA. The hybrid nanoparticles were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The magnetic properties, salt tolerance, and compatibility with sulfomethylated phenolic resin of the nanoparticles were studied. The plugging properties of the Fe3O4/PAA hybrid nanoparticles were evaluated by filtration testing of the filter cakes at ambient temperature and 80 °C. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43967.  相似文献   

7.
Carvedilol is a drug with low oral bioavailability due to its high first‐pass metabolism. The purpose of the present study was to prepare a mucoadhesive dry powder inhaler of this drug loaded in poly(ethylene‐co‐vinyl acetate)(PEVA) nanoparticles for pulmonary delivery. PEVA nanoparticles were prepared by an O/W solvent evaporation method and coated with different concentrations of chitosan as a mucoadhesive polymer. Encapsulation efficiency, particle size, zeta potential, release efficiency, and mucoadhesive properties of the different formulations were evaluated on mucin substrate. The optimized formulation of nanoparticles was spray dried using lactose and mannitol as carrier powders. The flowability of the obtained powders was checked by Carr's Index and Hausner ratio and the in vitro deposition of the aerosolized drug was investigated using a Next Generation Impactor. Increasing in the particle size and zeta potential of nanoparticles confirmed the settling of the chitosan coating layer on the surface of nanoparticles. The in vitro drug release from coated nanoparticles decreased with increasing of chitosan concentration. Mucoadhesive property of chitosan‐coated PEVA nanoparticles was higher than noncoated ones. Spray‐dried powders had different aerosilization behavior. Mannitol‐based formulation was found to have low density, better flow ability, smaller aerodynamic diameter (daer) and higher fine powder fraction. The results of the present study allow concluding that mannitol spray dried, mucoadhesive nanoparticles of PEVA are suitable inhaler powder for pulmonary delivery of carvedilol. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39694.  相似文献   

8.
The cadmium sulfide/polystyrene (CdS/PS) nanocomposites with concentration (0, 2, 4, 6, and 8) wt% of CdS nanoparticles were prepared by solution casting method and characterized through fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) measurements. The particle size of nanoparticles is found to be around 15 nm. Glass transition and mechanical behavior of CdS/PS nanocomposites were investigated using dynamic mechanical analyzer (DMA). The mechanical properties such as Young's modulus and tensile strength were determined at room, as well as at elevated temperatures through their stress–strain curves. The result shows that glass transition temperature (Tg) is shifted toward the higher temperature after the addition of CdS nanoparticles. The mechanical properties increased at low wt% loading of CdS nanoparticles and decreased for higher wt% loading of CdS nanoparticles. It was also found that mechanical properties decline with increase in the temperature. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

9.
In this article, we describe a novel redox interfacial‐initiated micro‐emulsion polymerization (RIEP) to prepare hollow polystyrene microspheres with magnetite nanoparticles (MPs) core and polystyrene (PS) shell (MPs‐PS) under ambient pressure. The emulsion was constituted water‐based magnetic ferro‐fluid as dispersing phase and organic solvent and styrene (St) as continuous phase. Cumene hydroperoxide (CHPO)/iron (II) sulfates (FS) as the redox initiation system, the water‐soluble FS acted as the reducing component and the oil‐soluble CHPO as the oxidant component of the redox initiation system. Therefore, the primary radicals are produced mainly at the oil/water interface to initiate the polymerization of styrene to form polymer shell. The final products thoroughly characterized by X‐ray powder diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, field‐emission scanning electron microscopy, thermogravimetric analysis, dynamic light scattering, and X‐ray photoelectron spectroscopy, which showed the formation of hollow magnetite/polystyrene nanocomposite microspheres. Magnetic measurements were carried out at room temperature using a vibrating sample magnetometer. The saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) is 30 emu/g, 15 emu/g and 370 Oe, respectively. The results revealed that the hybrid materials microspheres were super‐paramagnetic. POLYM. COMPOS., 31:1846–1852, 2010. © 2010 Society of Plastics Engineers  相似文献   

10.
M Dubois  Z Fawal  F Masin 《Carbon》2004,42(10):1931-1940
Semi-ionic carbon fluoride obtained by reaction of graphite with a gaseous mixture of IF5, HF and F2 was modified by a post-fluorination at various temperatures in the range 100-680 °C. The resulting materials were studied by 19F-NMR and EPR both at room temperature and at different experimental temperatures from 200 to 360 K and from 100 to 473 K for NMR and EPR experiments, respectively. 19F-NMR gives information about the residual intercalated iodine fluoride species (IF5, IF6 and IF7) such as the temperature of their removal from the host fluorocarbon matrix and their mobility into the interlayer space. The nature of the C-F bonding was investigated by 19F-NMR, MAS/13C-NMR, FT-IR spectroscopy and X-ray diffraction. The C-F bonding changes from semi-ionic to a mainly covalent character at a fluorination post-treatment temperature close to 450 °C. This transformation coincides with the removal of the iodine fluoride species from the host structure. The densities of the paramagnetic dangling bonds were studied by EPR; this technique allows also to investigate the local environment of the dangling bonds in the fully fluorinated samples (obtained with fluorination post-treatment temperatures higher than 450 °C). As a matter of fact, an hyperfine structure was observed for these samples; it results from interaction of the dangling bond electron with six neighboring fluorine nuclei. The role of the intercalated species (iodine fluoride compounds and HF) on the mechanisms of the extra-fluorination is also discussed.  相似文献   

11.
Chromium boride (CrB) has been prepared by using the chromium trioxide (CrO3) and sodium borohydride (NaBH4) as starting materials in a stainless-steel autoclave. The X-ray powder diffraction pattern indicates that the as-prepared product is orthorhombic phase CrB. Scanning electron microscopy shows that the product is composed of nanosheets and nanoparticles. In addition, the oxidation resistance of the as-prepared CrB product has also been investigated.  相似文献   

12.
Nano‐TiO2/carboxymethyl chitosan (CMCS)/poly(vinyl alcohol) (PVA) ternary nanocomposite hydrogels were prepared by freezing–thawing cycles and electron‐beam radiation with PVA, CMCS, and nano‐TiO2 as raw materials. The presence of nano‐TiO2 nanoparticles in the composite hydrogels was confirmed by thermogravimetry, Fourier transform infrared spectroscopy, and X‐ray powder diffraction. Field emission scanning electron microscopy images also illustrated that the TiO2/CMCS/PVA hydrogel exhibited a porous and relatively regular three‐dimensional network structure; at the same time, there was the presence of embedded nano‐TiO2 throughout the hydrogel matrix. In addition, the nano‐TiO2/CMCS/PVA composite hydrogels displayed significant antibacterial activity with Escherichia coli and Staphylococcus aureus as bacterial models. The antibacterial activity was demonstrated by the antibacterial circle method, plate count method, and cell density method. Also, with the Alamar Blue assay, the cytotoxicity of the composite hydrogel materials to L929 cells was studied. The results suggest that these materials had no obvious cytotoxicity. Thus, we may have developed a novel, good biocompatibility hydrogel with inherent photosensitive antibacterial activity with great potential for applications in the fields of cosmetics, medical dressings, and environmental protection. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44150.  相似文献   

13.
In this article we describe the combined use of γ‐irradiation initiated micro‐emulsion polymerization and redox interfacial‐initiated micro‐emulsion polymerization to prepare hollow polystyrene micro‐spheres with movable CdS nanoparticles inside (CdS@PSt) hybrid materials under room temperature and ambient pressure. First, mono‐dispersed CdS nanoparticles with diameters 50 nm were synthesized in inversed micro‐emulsion under γ‐irradiation. Then, CdS nanoparticles were coated with PSt via interfacial‐initiated micro‐emulsion polymerization with cumene hydroperoxide/ferrous sulfate (CHPO‐Fe2+) as the redox initiation pair. The resulted CdS@PSt hybrid materials were identified by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS) and X‐ray powder diffraction (XRD). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

14.
Nowadays, nanocomposites are a special class of materials having unique physical properties and wide application potential in diverse areas. The present research work describes an efficient method for synthesis of a series of polypyrrole/titanium dioxide (PPy/TiO2) nanocomposites with different TiO2 ratios. These nanocomposites were prepared by one‐step in situ deposition oxidative polymerization of pyrrole hydrochloride using ferric chloride (FeCl3) as an oxidant in the presence of ultra fine grade powder of anatase TiO2 nanoparticles cooled in an ice bath. The obtained nanocomposites were characterized by Fourier‐transform infrared (FTIR), thermogravimetric analysis (TGA), X‐ray diffraction (XRD), and scanning electron microscope (SEM) techniques. The obtained results showed that TiO2 nanoparticles have been encapsulated by PPy with a strong effect on the morphology of PPy/TiO2 nanocomposites. Also, the synthesized PPy/TiO2 nanocomposites had higher thermal stability than that of pure PPy. The investigation of electrical conductivity of nanocomposites by four‐point probe instrument showed that the conductivity of nanocomposite at low TiO2 content is much higher than of neat PPy, while with the increasing contents of TiO2, the conductivity decreases. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
The present study deals with the numerical analysis of the water droplet evaporation in the carrier gas inside an ultrasonic spray pyrolysis (USP) device. Droplet evaporation is studied through numerical computational fluid dynamics simulation using Ansys Fluent version 16.1 software. The governing equations for mass, momentum, and energy contain source terms for the effects of droplet evaporation. The results are provided as time dependent evaporation rate, temperature and diameter of droplet. Additional experimental evaporation of HAuCl4 solution droplets with temperatures of 80, 100 and 120°C was performed on a USP device. The obtained dried particles of gold chloride were characterized with TEM and analysed for their size and shapes to determine the effect of evaporation rate on the dried particle morphology. This provides insight into selecting optimal parameters for gold nanoparticle synthesis with HAuCl4 in USP, for targeted sizes and shapes of the nanoparticles.  相似文献   

16.
Different concentrations of trivalent samarium (Sm3+) ions doped cadmium sulphide (CdS) nanoparticles were fabricated by one-step solid-state method at low temperature using C10H6(SO3Na)2 as surfactant for optoelectronic and solar cell applications. They were characterized through powder X-ray diffraction, Fourier transform infrared, Raman, scanning electron microscopy, transmission electron microscopy, UV–Vis absorption and photoluminescence studies. These nanoparticles establish cubic structure without any foreign phase and it was confirmed by Raman studies. The Raman spectrum of CdS nanoparticles shows first three longitudinal optical phonon orders. The adjacent lattice fringes were spaced about 0.30 nm. The direct band gap energy was found slightly higher than the bulk crystallites. The photoluminescence spectra of CdS: Sm3+ exhibits a broad peak at 563 nm with a shoulder at around 607 nm corresponding to Sm3+: 4G5/2 → 6H7/2 transition at 402 nm excitation. A luminescence quenching was noticed at higher Sm3+ ions concentration due to transfer of energy among the excited Sm3+ ions. The CdS: Sm3+ particles were fabricated with a size of the order of nanoscale and they can be used for efficient energy conversion. The studied CdS: Sm3+ nanoparticles are suitable for optoelectronic and solar cell applications.  相似文献   

17.
Thermites prepared from nanoparticles are currently the subject of growing interest due to their increased performances compared to classical micrometer‐sized thermites. Here, we studied the combustion behavior of energetic composite composed of Al and chromium (III) oxide (Cr2O3) as function of the oxide particle size. Homogeneous composites were prepared by mixing Al nanoparticles (Φ≈50 nm) with Cr2O3 micro‐ and nanoparticles (Φ≈20 nm), respectively, in hexane solution. The dried Cr2O3/Al composite powders were ignited by using a CO2 laser beam. The use of nanosized Cr2O3 particles incontestably improves the energetic performances of the Al/Cr2O3 thermite since the ignition delay time was shortened by a factor 3.5 (16±2 vs 54±4 ms) and the combustion rate (340±10 mm s−1) was significantly accelerated in contrast to those reported until now. Interestingly, the sensitivity to friction of the Al‐based thermites formulated from Cr2O3 is two orders of magnitude lower than the thermite prepared from other metal oxide nanoparticles (MnO2, WO3). Finally, our study shows that the decrease of Cr2O3 particle size has an interesting and beneficial effect on the energetic properties of Cr2O3/Al thermites and appears as an alternative to tune the properties of these energetic materials.  相似文献   

18.
杨则恒  倪玉龙  梅周盛  王强  张卫新 《化工学报》2011,62(11):3276-3281
以废旧锂离子电池LiMn2O4正极材料为原料,通过控制酸浸条件分别制备出λ-MnO2纳米粒子和β-MnO2纳米棒,研究作为一次电池电极材料和超级电容器电极材料的相关电化学性能。利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和恒电流充放电、循环伏安等测试手段对样品成分、形貌和电化学性能进行分析表征。实验表明:在常温常压下,采用0.5 mol·L-1的H2SO4酸浸3 h可制备出λ-MnO2纳米颗粒;而于相似文献   

19.
An indium(III) three-dimensional coordination framework, [In2(OH)3(O4C8H4)1.5] n (1), was synthesized by hydrothermal method and characterized by elemental analyses, X-ray powder diffraction (XRD) and IR spectroscopy. Indium(III) oxide nanoparticles was prepared by direct thermal decomposition of 1 at 450 °C in air. The indium(III) oxide nanoparticles were characterized by scanning electron microscopy, X-ray powder diffraction (XRD) and energy-dispersive X-ray analysis (EDAX). This study demonstrates the coordination polymer frameworks may be suitable precursors for a simple one-pot preparation of nanoscale metal oxide materials with different and interesting morphologies.  相似文献   

20.
A new nano-sized La(III) supramolecular compound, [pyda.H]2[La2(pydc)4(H2O)4]·2H2O (1), where [pyda.H]+ = 2,6-diaminopyridinium, and [pydc]2? = 2,6-pyridinedicarboxylate, was synthesized by the sonochemical method and characterized by field emission scanning electron microscope (FESEM), X-ray powder diffraction (XRD) and elemental analyses. Lanthanum oxide nanoparticles were prepared by direct thermal decomposition of 1 nanostructures in a programmable furnace up to 800 °C in ambient atmosphere. The structural characterization was performed by powder XRD; and, morphological observations by FESEM revealed that the quasi-spherical La2O3 nanoparticles obtained are well crystallized and uniform in both morphology and particle size. The study demonstrates that supramolecular compounds may be suitable precursors for the simple one-pot preparation of nanoscale metal oxide materials with different morphologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号