首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 391 毫秒
1.
《Ceramics International》2017,43(17):15010-15017
During the last decade, fabrication of high-quality graphene films by chemical vapor deposition (CVD) for nanoelectronics and optoelectronic applications has attracted increasing attention. However, processing of large-area monolayer and defect-free graphene films is still challenging. In this work, we have studied the effect of processing conditions on the self-limited growth of graphene monolayers on copper foils during low pressure CVD both experimentally and theoretically based on thermokinetics and kinetics of Langmuir adsorption. The effect of copper pre-treatment, growth time, and carbon potential of the atmosphere (indicated by the methane-to-hydrogen gas ratio, r) on the quality of graphene nanosheets (number of layers, surface roughness and the lateral size) were studied. Microscopic studies show that careful pre-treatment of the copper foil by electropolishing provides a suitable condition for the self-limited growth of graphene with minimum surface roughness and defects. Raman spectroscopy and atomic force microscopy determine that the number of graphene sheets decreases with increasing the carbon potential while smother surfaces are attained. Large-area monolayer graphene films are obtained at relatively high carbon potential (r=1) and controlled growth time (10 min) at 1000 °C. Measurement of the electrical response of the prepared monolayer graphene films on SiO2 (300 nm)/Si substrates in a field effect transistor (FET) device shows a high mobility of 2780 cm2 V−1 s−1. Interestingly, the device exhibits p-type semiconducting behavior with the Dirac point at a gate voltage of 25 V. The finding show a great promise for graphene-based FET devices for future nanoelectronics.  相似文献   

2.
We present a comprehensive study of graphene grown by chemical vapor deposition on copper single crystals with exposed (1 0 0), (1 1 0) and (1 1 1) faces. Direct examination of the as-grown graphene by Raman spectroscopy using a range of visible excitation energies and microRaman mapping shows distinct strain and doping levels for individual Cu surfaces. Comparison of results from Raman mapping with X-ray diffraction techniques and atomic force microscopy shows it is neither the crystal quality nor the surface topography responsible for the specific strain and doping values, but it is the Cu lattice orientation itself. We also report an exceptionally narrow Raman 2D band width caused by the interaction between graphene and metallic substrate. The appearance of this extremely narrow 2D band with full-width-at-half maximum (FWHM) as low as 16 cm−1 is correlated with flat and undoped regions on the Cu(1 0 0) and (1 1 0) surfaces. The generally compressed (∼0.3% of strain) and n-doped (Fermi level shift of ∼250 meV) graphene on Cu(1 1 1) shows the 2D band FWHM minimum of ∼20 cm−1. In contrast, graphene grown on Cu foil under the same conditions reflects the heterogeneity of the polycrystalline surface and its 2D band is accordingly broader with FWHM >24 cm−1.  相似文献   

3.
We report the atmospheric pressure chemical vapor deposition (CVD) growth of single-layer graphene over a crystalline Cu(1 1 1) film heteroepitaxially deposited on c-plane sapphire. Orientation-controlled, epitaxial single-layer graphene is achieved over the Cu(1 1 1) film on sapphire, while a polycrystalline Cu film deposited on a Si wafer gives non-uniform graphene with multi-layer flakes. Moreover, the CVD temperature is found to affect the quality and orientation of graphene grown on the Cu/sapphire substrates. The CVD growth at 1000 °C gives high-quality epitaxial single-layer graphene whose orientation of hexagonal lattice matches with the Cu(1 1 1) lattice which is determined by the sapphire’s crystallographic direction. At lower CVD temperature of 900 °C, low-quality graphene with enhanced Raman D band is obtained, and it showed two different orientations of the hexagonal lattice; one matches with the Cu lattice and another rotated by 30°. Carbon isotope-labeling experiment indicates rapid exchange of the surface-adsorbed and gas-supplied carbon atoms at the higher temperature, resulting in the highly crystallized graphene with energetically most stable orientation consistent with the underlying Cu(1 1 1) lattice.  相似文献   

4.
We investigated the structure and crystalline quality of monolayer graphene grown by hydrogen and methane chemical vapor deposition (CVD) on polycrystalline Cu foils. Our data show that the high temperature hydrogen pretreatment of the Cu foil has to be performed at a sufficiently high H2 pressure in order to avoid graphene (g) formation already during the pretreatment, which limits the achievable domain size during subsequent growth in the CH4/H2 mixture. Methane–hydrogen CVD sustains g growth but induces the faceting of the Cu substrate. Characterization by low energy electron microscopy evidenced a staircase Cu substrate morphology of alternating (4 1 0) and (1 0 0) planes interrupted by (n 1 1) type facets. The g flakes cover the staircase shaped support as a coherent layer. The polycrystalline film mostly contains rotational domains that are preferentially, but not strictly, aligned with respect to the stepped support surface. The substrate induced corrugated morphology occurs also underneath large single crystalline flakes and is transferred to suspended membranes, produced by etching the Cu underneath the graphene. Thus, membranes manufactured from g-Cu are non flat. This explains their reported softened elastic response and the formation of so called nanorippled graphene after transfer from the Cu support which deteriorates its electrical conductivity.  相似文献   

5.
Quasi-free-standing monolayer and bilayer graphene is grown on homoepitaxial layers of 4H-SiC. The SiC epilayers themselves are grown on the Si-face of nominally on-axis semi-insulating substrates using a conventional SiC hot-wall chemical vapor deposition reactor. The epilayers were confirmed to consist entirely of the 4H polytype by low temperature photoluminescence. The doping of the SiC epilayers may be modified allowing for graphene to be grown on a conducing substrate. Graphene growth was performed via thermal decomposition of the surface of the SiC epilayers under Si background pressure in order to achieve control on thickness uniformity over large area. Monolayer and bilayer samples were prepared through the conversion of a carbon buffer layer and monolayer graphene respectively using hydrogen intercalation process. Micro-Raman and reflectance mappings confirmed predominantly quasi-free-standing monolayer and bilayer graphene on samples grown under optimized growth conditions. Measurements of the Hall properties of Van der Pauw structures fabricated on these layers show high charge carrier mobility (>2000 cm2/Vs) and low carrier density (<0.9 × 1013 cm−2) in quasi-free-standing bilayer samples relative to monolayer samples. Also, bilayers on homoepitaxial layers are found to be superior in quality compared to bilayers grown directly on SI substrates.  相似文献   

6.
The formation of high-quality graphene layers on diamond was achieved based on a high-temperature annealing method using a Cu catalyst. Typical features of monolayer graphene were observed in the Raman spectra of layers formed by annealing of Cu/diamond heterostructures at 950 °C for 90 min. The coverage ratio of these graphene layers on diamond was estimated to be on the order of 85% by Raman mapping of the 2D peak. The sheet hole concentration and mobility values of the layers were estimated to be ~ 1013 cm 2 and ~ 670 cm2/Vs, respectively. These values are comparable to those previously observed for high-quality graphene layers on SiC.  相似文献   

7.
Large size and high quality graphene grown by chemical vapour deposition (CVD) has been fabricated into an array of discrete graphene sheets with well-defined sizes and shapes. A fabrication process based on nanoimprint lithography has been developed to achieve shape tunability with sizes ranging from micrometer to nanometer. The technique preserves the quality of the CVD grown graphene and offers the versatility of transferring the graphene array onto any rigid or flexible substrate. The process is then expanded to fabricating a graphene based microelectrode array whose performance is demonstrated in the real time sensing of peroxidase excreted by breast cancer cells. The device displayed a linear working range of 0.01–25 mM and a sensitivity of 8.8 mA mol−1.  相似文献   

8.
The effect of surface plasma treatment on the nature of the electrical contact to the nitrogen incorporated nanocrystalline diamond (n-NCD) films is reported. Nitrogen incorporated NCD films were grown in a microwave plasma enhanced chemical vapor deposition (MPECVD) reactor using CH4 (1%)/N2 (20%)/Ar (79%) gas chemistry. Raman spectra of the films showed features at ∼ 1140 cm 1, 1350 cm 1(D-band) and 1560 cm 1(G-band) respectively with changes in the bonding configuration of G-band after the plasma treatment. Electrical contacts to both untreated and surface plasma treated films are formed by sputtering and patterning Ti/Au metal electrodes. Ohmic nature of these contacts on the untreated films has changed to non-ohmic type after the hydrogen plasma treatment. The linear current–voltage characteristics could not be obtained even after annealing the contacts. The nature of the electrical contacts to these films depends on the surface conditions and the presence of defects and sp2 carbon.  相似文献   

9.
In this work we present combined Kelvin probe force microscopy and Raman spectroscopy studies of supported and suspended structures formed out of chemical vapor deposition (CVD) grown graphene. Work function of both suspended and supported graphene was -4.81 ± 0.06eV and -4.92 ± 0.06eV respectively. By G and 2D modes correlation we showed, that CVD graphene was influenced by biaxial strain. Increased contact potential difference (CPD) on the suspended graphene in comparison with the areas of the supported graphene was the sign of increased strain (from 0.05% to ~ 0.12%) rather than decreased doping (p-doping decreased from ~ 5.5 × 1012cm-2 to ~ 4.5 × 1012cm-2).  相似文献   

10.
We present here a detailed study of the oxidation resistance of chemical vapor deposition (CVD) graphene. The results reveal that CVD graphene shows an excellent performance as a passivation layer below 200 °C, but the protection ability degenerates rapidly with increasing the air temperature. Our work demonstrates for the first time that the most adverse effect on the degeneration of oxidation resistance in high temperature air comes from wrinkles but not others, such as Cu grain boundaries, periodic surface depressions due to Cu surface reconstruction induced by the graphene overlay, graphene domain boundaries, which are always believed the primary factor for inferior quality of the CVD graphene at present. In addition, we found that the distribution of the wrinkles in CVD graphene depended on the Cu crystal structure, and the results of the Electron-backscatter diffraction indicate that the folded wrinkles always appear on Cu (0 0 1) facets, while the standing collapsed wrinkles appear more easily on the Cu (1 1 1) facets.  相似文献   

11.
Cu foils of 2 × 2 cm2 have been implanted with 70 keV C ions to nominal fluences of (2–10) × 1015 cm−2 at room temperature (RT) and subsequently annealed at 900–1100 °C for 15 min, before being cooled to RT to form graphene layers on the Cu surfaces. Analyses with Raman spectroscopy and atomic force microscopy demonstrate that a continuous film of bi-layer graphene (BG) is produced for implant fluences as low as 2 × 1015 cm−2, much less than the carbon content of the BG films. This suggests that the implanted carbon facilitates the nucleation and growth of graphene, with additional carbon supplied by the Cu substrate (0.515 ppm carbon content). No graphene was observed on unimplanted Cu foils subjected to the same thermal treatment. This implantation method provides a novel technique for the selective growth of graphene on Cu surfaces.  相似文献   

12.
Graphene of different layer numbers was fabricated using thermal chemical vapor deposition (TCVD), and it was demonstrated as a heat spreader in electronic packaging. Platinum thermal evaluation chips were used to evaluate the thermal performance of the graphene heat spreaders. The temperature of a hot spot driven at a heat flux of up to 430 W cm−2 was decreased from 121 °C to 108 °C (ΔT  13 °C) with the insertion of the monolayer graphene heat spreader, compared with the multilayer (n = 6–10) ones’ temperature drop of ∼8 °C. Various parameters affecting the thermal performance of graphene heat spreaders were discussed, e.g. layer numbers of graphene, phonon scattering, thermal boundary resistance. We demonstrate the potentials of using a complementary metal oxide semiconductor compatible TCVD process to utilize graphene as a heat spreader for heat dissipation purposes.  相似文献   

13.
We have performed high-resolution angle-resolved photoemission spectroscopy of oxygen-adsorbed monolayer graphene grown on 6H–SiC(0 0 0 1). We found that the energy gap between the π and π1 bands gradually increases with oxygen adsorption to as high as 0.45 eV at the 2000 L oxygen exposure. A systematic shrinkage of the π1 electron Fermi surface was also observed. The present result strongly suggests that the oxidization is a useful technique to create and control the band gap in monolayer graphene.  相似文献   

14.
Fabrication of monolayer graphene is a challenge and many processes yield few-layer or multi-layer graphene materials instead. The layer number is an important property of those materials and a quality control variable in graphene manufacture. We demonstrated that N2 adsorption on graphene materials was used to distinguish its layer number. We performed grand canonical Monte Carlo simulation of N2 adsorption on graphene materials with 1–10 layers to indicate the possibility of distinction of layer number by evaluating the dependence of N2 adsorption characteristics on the layer number of graphene materials as well as the adsorption mechanism. The threshold relative pressures of monolayer adsorption of N2 on monolayer and two-layer graphene were 1 × 10−3 and 2 × 10−4, respectively, while those of the others were 1 × 10−4. In contrast, the threshold pressures of second layer adsorption of N2 were similar to each other. The difference of threshold pressures is attributed to stabilized energies induced by interactions with graphene materials. Therefore, the layer number of graphene materials could be evaluated from the threshold pressures of adsorption, providing a guide to aid fabrication of graphene materials.  相似文献   

15.
We report the synthesis of high-quality graphene films on Ni foils using a cold-wall reactor by rapid thermal chemical vapor deposition (CVD). The graphene films were produced by shortening the growth time to 10 s, suggesting that a direct growth mechanism may play a larger role rather than a precipitation mechanism. A lower H2 flow rate is favorable for the growth of high-quality graphene films. The graphene film prepared without the presence of H2 has a sheet resistance as low as ~367 ohm/sq coupled with 97.3% optical transmittance at 550 nm wavelength, which is much better than for those grown by hot-wall CVD systems. These data suggest that the structural and electrical characteristics of these graphene films are comparable to those prepared by CVD on Cu.  相似文献   

16.
Bimetallic PtPd nanocubes supported on graphene nanosheets (PtPdNCs/GNs) were prepared by a rapid, one-pot and surfactant-free method, in which N,N-dimethylformamide (DMF) was used as a bi-functional solvent for the reduction of both metal precursors and graphene oxide (GO) and for the surface confining growth of PtPdNCs. The morphology, structure and composition of the thus-prepared PtPdNCs/GNs were characterized by transmission electron microscopy (TEM), high resolution TEM, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Because no surfactant or halide ions were involved in the proposed synthesis, the prepared PtPdNCs/GNs were directly modified onto a glassy carbon electrode and showed high electrocatalytic activity for methanol oxidation in cyclic voltammetry without any pretreatments. Moreover, with the synergetic effects of Pt and Pd and the enhanced electron transfer by graphene, the PtPdNCs/GNs composites exhibited higher electrocatalytic activity (jp = 0.48 A mg−1) and better tolerance to carbon monoxide poisoning (If/Ib = 1.27) compared with PtPd nanoparticles supported on carbon black (PtPdNPs/C) (jp = 0.28 A mg−1; If/Ib = 1.01) and PtNPs/GNs (jp = 0.33 A mg−1; If/Ib = 0.95). This approach demonstrates that the use of DMF as a solvent with heating is really useful for reducing GO and metal precursors concurrently for preparing clean metal–graphene composites.  相似文献   

17.
By ab initio calculation, Au, Cu, Fe, Ni, and Pt adatoms were proposed for modulating the electronic property of graphdiyne naoribbons (GDNRs). GDNRs of 1–4 nm in width were found to be stable at room temperature, and the thermal rates of Au, Cu, Fe, Ni, and Pt adatoms escaping from GDNR are slower than 0.003 atoms per hour even at 900 K. According to the calculation, Au and Cu-decorated GDNRs are metallic with carrier concentrations close to that of graphene at room temperature, while Fe, Ni, and Pt-decorated GDNRs are n-type semiconductors with impurity states below Fermi energy. Heterojunction composed by doping Au, Cu, or Fe atom on one side of GDNR was proposed as metal–semiconductor rectifier with rectification ratio of 2.8, 1.5, or 2.5 at 1.0 V, respectively.  相似文献   

18.
This study aimed at immobilizing Reactive Blue 2 (RB 2) dye in chitosan microspheres through nucleophilic substitution reaction. The adsorbent chemical modification was confirmed by Raman spectroscopy and thermogravimetric analysis. This adsorption study was carried out with Cu(II) and Ni(II) ions and indicated a pH dependence, while the maximum adsorption occurred around pH 7.0 and 8.5, respectively. The pseudo second-order kinetic model resulted in the best fit with experimental data obtained from Cu(II) (R = 0.997) and Ni(II) (R = 0.995), also providing a rate constant, k2, of 4.85 × 10−4 and 3.81 × 10−4 g (mg min)−1, respectively, thus suggesting that adsorption rate of metal ions by chitosan-RB 2 depends on the concentration of ions on adsorbent surface, as well as on their concentration at equilibrium. The Langmuir and Freundlich isotherm models were employed in the analysis of the experimental data for the adsorption, in the form of linearized equations. Langmuir model resulted in the best fit for both metals and maximum adsorption was 57.0 mg g−1 (0.90 mmol g−1) for Cu(II) and 11.2 mg g−1 (0.19 mmol g−1) for Ni(II). The Cu(II) and Ni(II) ions were desorbed from chitosan-RB 2 with aqueous solutions of EDTA and H2SO4, respectively.  相似文献   

19.
Three-dimensional (3D) graphene foam materials are highly favored due to large accessible surface and excellent conductive network, which can be commendably applied as self-supporting electrodes for advanced rechargeable lithium batteries (RLBs). Here, promising graphene nanosheets/acid-treated multi-walled carbon nanotubes (GNS/aMWCNT)-supported 1,5-diaminoanthraquinone (DAA) organic foams [oGCTF(DAA)] are prepared by organic solvent displacement method followed by solvothermal reaction. And then electrochemical polymerization is carried out to obtain 3D porous GNS/aMWCNT organic foam-supported poly(1,5-diaminoanthraquinone) (oGCTF@PDAA) nanocomposites, which achieves the ordered growth of homogeneous PDAA nanoparticles on GNS/aMWCNT surface due to the role of oGCTF(DAA). Such structure largely improves PDAA utilization, facilitates charge transportation and suppresses the dissolution of PDAA. As a result, the oGCTF@PDAA cathode for RLBs delivers a high discharge capacity of 289 mAh g−1 at 30 mA g−1 and still retains 122 mAh g−1 at extreme 10 A g−1 for rapid charging/discharging. Moreover, superior cycling stability is achieved with only 14.8% capacity loss after 2000 cycles even at a high current density of 1 A g−1.  相似文献   

20.
The physicochemical property of chemically prepared graphene can be significantly changed due to the incorporating of heteroatoms into graphene. In this article, boron-doped graphene sheets are used as carbon substrates instead of graphene for loading polyaniline by in situ polymerization. Compared with the individual component and polyaniline/non-doped graphene, the sandwich-like polyaniline/boron-doped graphene exhibits remarkably enhanced electrochemical specific capacitance in both acid and alkaline electrolytes. In a three-electrode configuration, the hybrid has a specific capacitance about 406 F g−1 in 1 M H2SO4 and 318 F g−1 in 6 M KOH at 1 mV s−1. In the two-electrode system of a symmetric supercapacitor, this hybrid achieves a specific capacitance about 241 and 189 F g−1 at 0.5 A g−1 with a specific energy density around 19.9 and 30.1 Wh kg−1, in the acid and alkaline electrolytes, respectively. The as-obtained polyaniline/boron-doped graphene hybrid shows good rate performance. Notably, the obtained electrode materials exhibit long cycle stability in both acid and alkaline electrolytes (∼100% and 83% after 5000 cycles, respectively). The improved electrochemical performance of the hybrid is mainly attributed to the introduction of additional p-type carriers in carbon systems by boron-doping and the well combination of pseudocapacitive conducting polyaniline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号