首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The oxidation state of palladium on SiO2–Al2O3 used for propane combustion was examined by XPS and XRD, and the correlation of the catalytic activity with the oxidation state of palladium was systematically studied. The propane conversion over 5 wt% Pd/SiO2–Al2O3 was measured in the range 1.0≤S≤7.2 (S is defined as [O2]/5[C3H8] based on stoichiometric ratio). The propane conversion strongly depended on the S value and reached the maximum at S=5.5. The oxidation state of palladium also changed with the S value; palladium particles were more oxidized under the reaction mixture of higher S value. On the sample used for the reaction at S=5.5, both of metallic palladium and palladium oxide were found. It is concluded that partially oxidized palladium which has optimum ratio of metallic palladium to palladium oxide shows the highest catalytic activity in propane combustion.  相似文献   

2.
The selective catalytic reduction (SCR) of NOx assisted by propene is investigated on Pd/Ce0.68Zr0.32O2 catalysts (Pd/CZ), and is compared, under identical experimental conditions, with that found on a Pd/SiO2 reference catalyst. Physico-chemical characterisation of the studied catalysts along with their catalytic properties indicate that Pd is not fully reduced to metallic Pd for the Pd/CZ catalysts. This study shows that the incorporation of Pd to CZ greatly promotes the reduction of NO in the presence of C3H6. These catalysts display very stable deNOx activity even in the presence of 1.7% water, the addition of which induces a reversible deactivation of about 10%. The much higher N2 selectivity obtained on Pd/CZ suggests that the lean deNOx mechanism occurring on these catalysts is different from that occurring on Pd0/SiO2. A detailed mechanism is proposed for which CZ achieves both NO oxidation to NO2 and NO decomposition to N2, whereas PdOx activates C3H6 via ad-NO2 species, intermediately producing R-NOx compounds that further decompose to NO and CxHyOz. The role of the latter oxygenates is to reduce CZ to provide the catalytic sites responsible for NO decomposition. The proposed C3H6-assisted NO decomposition mechanism stresses the key role of NO2, R-NOx and CxHyOz as intermediates of the SCR of NOx by hydrocarbons.  相似文献   

3.
Several hexaaluminate-related materials were prepared via hydrolysis of alkoxide and powder mixing method for high temperature combustion of CH4 and C3H8, in order to investigate the effect of the concentration of the fuels, O2 and H2O on NOx emission and combustion characteristics. Among the hexaaluminate catalysts, Sr0.8La0.2MnAl11O19− prepared by the alkoxide method exhibited the highest activity for methane combustion and low NOx emission capability. NOx emission at 1500 °C was increased linearly with O2 concentration, whereas water vapor addition decreased NOx emission in CH4 combustion over the Sr0.8La0.2MnAl11O19− catalyst. In the catalytic combustion of C3H8 over the Sr0.8La0.2MnAl11O19− catalyst, the amount of NOx emitted was raised in the temperature range between 1000 and 1500 °C when the C3H8 concentration increased from 1 to 2 vol.%. It was found that NOx emission in this temperature range was reduced effectively by adding water vapor.  相似文献   

4.
A series of La(Co, Mn, Fe)1−x(Cu, Pd)xO3 perovskites having high specific surface areas and nanosized crystal domains was prepared by reactive grinding. The solids were characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed desorption (TPD) of O2, NO + O2, C3H6, in the absence or presence of 5% H2O, Fourier transform infrared (FTIR) spectroscopy, as well as activity tests towards NO reduction by propene under the conditions of 3000 ppm NO, 3000 ppm C3H6, 1% O2, 0 or 10% H2O, and 50,000 h−1 space velocity. The objective was to investigate the influence of H2O addition on catalytic behavior. A good performance (100% NO conversion, 77% N2 yield, and 90% C3H6 conversion) was achieved at 600 °C over LaFe0.8Cu0.2O3 under a dry feed stream. With the exposure of LaFe0.8Cu0.2O3 to a humid atmosphere containing 10% water vapor, the catalytic activity was slightly decreased yielding 91% NO conversion, 51% N2 yield, and 86% C3H6 conversion. A competitive adsorption between H2O vapor with O2 and NO molecules at anion vacancies over LaFe0.8Cu0.2O3 was found by means of TPD studies here. A deactivation mechanism was therefore proposed involving the occupation of available active sites by water vapor, resulting in an inhibition of catalytic activity in C3H6 + NO + O2 reaction. This H2O deactivation was also verified to be strictly reversible by removing steam from the feed.  相似文献   

5.
Chunli Zhao  Israel E. Wachs   《Catalysis Today》2006,118(3-4):332-343
The vapor-phase selective oxidation of propylene (H2CCHCH3) to acrolein (H2CCHCHO) was investigated over supported V2O5/Nb2O5 catalysts. The catalysts were synthesized by incipient wetness impregnation of V-isopropoxide/isopropanol solutions and calcination at 450 °C. The catalytic active vanadia component was shown by in situ Raman spectroscopy to be 100% dispersed as surface VOx species on the Nb2O5 support in the sub-monolayer region (<8.4 V/nm2). Surface allyl species (H2CCHCH2*) were observed with in situ FT-IR to be the most abundant reaction intermediates. The acrolein formation kinetics and selectivity were strongly dependent on the surface VOx coverage. Two surface VOx sites were found to participate in the selective oxidation of propylene to acrolein. The reaction kinetics followed a Langmuir–Hinshelwood mechanism with first-order in propylene and half-order in O2 partial pressures. C3H6-TPSR spectroscopy studies also revealed that the lattice oxygen from the catalyst was not capable of selectively oxidizing propylene to acrolein and that the presence of gas phase molecular O2 was critical for maintaining the surface VOx species in the fully oxidized state. The catalytic active site for this selective oxidation reaction involves the bridging VONb support bond.  相似文献   

6.
The effect of the nature and distribution of VOx species over amorphous and well-ordered (MCM-41) SiO2 as well as over γ-Al2O3 on their performance in the oxidative dehydrogenation of propane with O2 and N2O was studied using in situ UV–vis, ex situ XRD and H2-TPR analysis in combination with steady-state catalytic tests. As compared to the alumina support, differently structured SiO2 supports stabilise highly dispersed surface VOx species at higher vanadium loading. These species are more selective over the latter materials than over V/γ-Al2O3 catalysts. This finding was explained by the difference in acidic properties of silica- and alumina-based supports. C3H6 selectivity over V/γ-Al2O3 materials is improved by covering the support fully with well-dispersed VOx species. Additionally, C3H6 selectivity over all materials studied can be tuned by using an alternative oxidising agent (N2O). The improving effect of N2O on C3H6 selectivity is related to the lower ability of N2O for catalyst reoxidation resulting in an increase in the degree of catalyst reduction, i.e. spatial separation of active lattice oxygen in surface VOx species. Such separation favours selective oxidation over COx formation.  相似文献   

7.
The effect of different reducing agents (H2, CO, C3H6 and C3H8) on the reduction of stored NOx over PM/BaO/Al2O3 catalysts (PM = Pt, Pd or Rh) at 350, 250 and 150 °C was studied by the use of both NO2-TPD and transient reactor experiments. With the aim of comparing the different reducing agents and precious metals, constant molar reduction capacity was used during the reduction period for samples with the same molar amount of precious metal. The results reveal that H2 and CO have a relatively high NOx reduction efficiency compared to C3H6 and especially C3H8 that does not show any NOx reduction ability except at 350 °C over Pd/BaO/Al2O3. The type of precious metals affects the NOx storage-reduction properties, where the Pd/BaO/Al2O3 catalyst shows both a high storage and a high reduction ability. The Rh/BaO/Al2O3 catalyst shows a high reduction ability but a relatively low NOx storage capacity.  相似文献   

8.
The performance of unpromoted and MOx-(M: alkali (earth), transition metal and cerium) promoted Au/Al2O3 catalysts have been studied for combustion of the saturated hydrocarbons methane and propane. As expected, higher temperatures are required to oxidize CH4 (above 400 °C), compared with C3H8 (above 250 °C). The addition of various MOx to Au/Al2O3 improves the catalytic activity in both methane and propane oxidation. For methane oxidation, the most efficient promoters to enhance the catalytic performance of Au/Al2O3 are FeOx and MnOx. For C3H8 oxidation a direct relationship is found between the catalytic performance and the average size of the gold particles in the presence of alkali (earth) metal oxides. The effect of the gold particle size becomes less important for additives of the type of transition metal oxides and ceria. The results suggest that the role of the alkali (earth) metal oxides is related to the stabilization of the gold nanoparticles, whereas transition metal oxide and ceria additives may be involved in oxygen activation.  相似文献   

9.
The performance of the active catalyst 5%V2O5-1.9%MgO/TiO2 in propane oxidative dehydrogenation is investigated under various reactant contact modes: co-feed and redox decoupling using fixed bed and co-feed using fluid bed. Using fixed bed reactor under co-feed conditions, propane is activated easily on the catalyst surface with selectivities ranging from 30 to 75% depending on the degree of conversion. Under varying oxygen partial pressures, especially for higher than the stoichiometric ratio O2/C3H8 = 1/2, nor the propane conversion or the selectivities to propene and COx are affected. The performance of the catalyst in the absence of gas phase oxygen was tested at 400 °C. It was confirmed that the catalyst surface oxygen participates to the activation of propane forming propene and oxidation products with similar selectivities as those obtained under co-feed conditions. The ability of the catalyst to fully restore its activity by oxygen treatment was checked in repetitive reduction–oxidation cycles. Fluid bed reactor using premixed propane–oxygen mixtures was also employed in the study. The catalyst was proved to be very active in the temperature range 300–450 °C attaining selectivities comparable to those of fixed bed.  相似文献   

10.
Pd/Nb2O5/Al2O3 catalysts were investigated on propane oxidation. Diffuse reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS) analysis suggested that monolayer coverage was attained between 10 and 20 wt.% of Nb2O5. Temperature programmed reduction (TPR) evidenced the partial reduction of niobium oxide. The maximum propane conversion observed on the Pd/10% Nb2O5/Al2O3 corresponded to the maximum Nb/Al surface ratio. The presence of NbOx polymeric structures near to the monolayer could favor the ideal Pd0/Pd2+ surface ratio to the propane oxidation which could explain the promoting effect of niobium oxide.  相似文献   

11.
The adsorption of HCN on, its catalytic oxidation with 6% O2 over 0.5% Pt/Al2O3, and the subsequent oxidation of strongly bound chemisorbed species upon heating were investigated. The observed N-containing products were N2O, NO and NO2, and some residual adsorbed N-containing species were oxidized to NO and NO2 during subsequent temperature programmed oxidation. Because N-atom balance could not be obtained after accounting for the quantities of each of these product species, we propose that N2 and was formed. Both the HCN conversion and the selectivity towards different N-containing products depend strongly on the reaction temperature and the composition of the reactant gas mixture. In particular, total HCN conversion reaches 95% above 250 °C. Furthermore, the temperature of maximum HCN conversion to N2O is located between 200 and 250 °C, while raising the reaction temperature increases the proportion of NOx in the products. The co-feeding of H2O and C3H6 had little, if any effect on the total HCN conversion, but C3H6 addition did increase the conversion to NO and decrease the conversion to NO2, perhaps due to the competing presence of adsorbed fragments of reductive C3H6. Evidence is also presented that introduction of NO and NO2 into the reactant gas mixture resulted in additional reaction pathways between these NOx species and HCN that provide for lean-NOx reduction coincident with HCN oxidation.  相似文献   

12.
The interaction of sulfur dioxide with a commercial NOx storage-reduction catalyst (NSR) has been investigated using in situ IR and X-ray absorption spectroscopy. Two pathways of catalyst deactivation by SO2 were identified. Under lean conditions (exposure to SO2 and O2) at 350 °C the storage component forms barium sulfates, which transform from surface to hardly reducible bulk sulfate species. The irreversible blocking of the Ba sites led to a decrease in NOx storage capacity. Under fuel rich conditions (SO2/C3H6) at 350–500 °C evidence for the formation of sulfides on the oxidation/reduction component (Pt) of the catalyst was found, which blocks the metal surface and thus hinders the further reduction of the sulfides.  相似文献   

13.
The role of La2O3 loading in Pd/Al2O3-La2O3 prepared by sol–gel on the catalytic properties in the NO reduction with H2 was studied. The catalysts were characterized by N2 physisorption, temperature-programmed reduction, differential thermal analysis, temperature-programmed oxidation and temperature-programmed desorption of NO.

The physicochemical properties of Pd catalysts as well as the catalytic activity and selectivity are modified by La2O3 inclusion. The selectivity depends on the NO/H2 molar ratio (GHSV = 72,000 h−1) and the extent of interaction between Pd and La2O3. At NO/H2 = 0.5, the catalysts show high N2 selectivity (60–75%) at temperatures lower than 250 °C. For NO/H2 = 1, the N2 selectivity is almost 100% mainly for high temperatures, and even in the presence of 10% H2O vapor. The high N2 selectivity indicates a high capability of the catalysts to dissociate NO upon adsorption. This property is attributed to the creation of new adsorption sites through the formation of a surface PdOx phase interacting with La2O3. The formation of this phase is favored by the spreading of PdO promoted by La2O3. DTA shows that the phase transformation takes place at temperatures of 280–350 °C, while TPO indicates that this phase transformation is related to the oxidation process of PdO: in the case of Pd/Al2O3 the O2 uptake is consistent with the oxidation of PdO to PdO2, and when La2O3 is present the O2 uptake exceeds that amount (1.5 times). La2O3 in Pd catalysts promotes also the oxidation of Pd and dissociative adsorption of NO mainly at low temperatures (<250 °C) favoring the formation of N2.  相似文献   


14.
A methodical basis of the evolutionary method for selection and optimization of heterogeneous catalytic materials was developed. For validation, the oxidative dehydrogenation of propane was used as a model reaction. Various oxides (V2O5, MoO3, MnO2, Fe2O3, GaO, MgO, B2O3, La2O3) were chosen as primary components for the generation of catalytic materials. The first generation consisting of 56 catalytic materials was created by combination of the primary components in a stochastic manner. The materials of each preceding generation were selected based on the catalytic results obtained and subjected to an evolutionary procedure applying mutation and crossover operators to create further generations of catalytic materials of different qualitative and quantitative compositions. For illustration, four generations were created with a total number of tested catalytic materials of 224. As a result of the preliminary optimization procedure an increase in the propene yield was achieved with increasing number of generations; the results can be certainly improved by screening further generations of catalytic materials. Under standard conditions used for testing (T=500°C, C3H8/O2=3, p(C3H8)=30 Pa), the highest C3H6 yield amounted to 9.0% (S=57.4%) in the 3rd generation on V0.22Mg0.47Mo0.11Ga0.20Ox.  相似文献   

15.
La1−xSrxMnO3 (x=0, 0.1, 0.3, 0.5, 0.7) perovskite-type oxides (PTOs) were prepared by coprecipitation under various calcination temperature, and their performances for the NO reduction were evaluated under a simulated exhaust gas mixture. The X-ray diffraction (XRD) and thermogravimetric analysis were carried out to find the formation process of the perovskite. The NO reduction rate under different reaction temperature, the concentration of oxygen and the presence of hydrocarbon were observed by the input/output analysis. In the presence of 10% excess oxygen, the catalyst La0.7Sr0.3MnO3 calcined at 900 °C showed a NO reduction rate of 61% at 380 °C. The study of the reaction curves showed that C3H8 could act as the reducer for the NO reduction below 400 °C. The NO reduction is highly affected by increasing the O2 concentration from 0.5 to 10%, especially at high temperatures when oxygen becomes more competitive than NO on the oxidation of C3H8, leading to a decrease of the NO reduction from 100% to zero at 560 °C.  相似文献   

16.
CeO2 and CeReOx_y catalysts are prepared by the calcination at different temperatures (y = 500–1000 °C) and having a different composition (Re = La3+ or Pr3+/4+, 0–90 wt.%). The catalysts are characterised by XRD, H2-TPR, Raman, and BET surface area. The soot oxidation is studied with O2 and NO + O2 in the tight and loose contact conditions, respectively. CeO2 sinters between 800–900 °C due to a grain growth, leading to an increased crystallite size and a decreased BET surface area. La3+ or Pr3+/4+ hinders the grain growth of CeO2 and, thereby, improving the surface catalytic properties. Using O2 as an oxidant, an improved soot oxidation is observed over CeLaOx_y and CePrOx_y in the whole dopant weight loading and calcination temperature range studied, compared with CeO2. Using NO + O2, the soot conversion decreased over CeLaOx_y catalysts calcined below 800 °C compared with the soot oxidation over CeO2_y. CePrOx_y, on the other hand, showed a superior soot oxidation activity in the whole composition and calcination temperature range using NO + O2. The improvement in the soot oxidation activity over the various catalysts with O2 can be explained based on an improvement in the external surface area. The superior soot oxidation activity of CePrOx_y with NO + O2 is explained by the changes in the redox properties of the catalyst as well as surface area. CePrOx_y, having 50 wt.% of dopant, is found to be the best catalyst due to synergism between cerium and praseodymium compared to pure components. NO into NO2 oxidation activity, that determines soot oxidation activity, is improved over all CePrOx catalysts.  相似文献   

17.
Nanoparticles of CexZr1−xO2 (x = 0.75, 0.62) were prepared by the oxidation-coprecipitation method using H2O2 as an oxidant, and characterized by N2 adsorption, XRD and H2-TPR. CexZr1−xO2 prepared had single fluorite cubic structure, good thermal stability and reduction property. With the increasing of Ce/Zr ratio, the surface area of CexZr1−xO2 increased, but thermal stability of CexZr1−xO2 decreased. The surface area of Ce0.62Zr0.38O2 was 41.2 m2/g after calcination in air at 900 °C for 6 h. TPR results showed the formation of solid solution promoted the reduction of CeO2, and the reduction properties of CexZr1−xO2 were enhanced by the cycle of TPR-reoxidation. The Pd-only three-way catalysts (TWC) were prepared by the impregnation method, in which Ce0.75Zr0.25O2 was used as the active washcoat and Pd loading was 0.7 g/L. In the test of Air/Fuel, the conversion of C3H8 was close to 100% and NO was completely converted at λ < 1.025. The high conversion of C3H8 was induced by the steam reform and dissociation adsorption reaction of C3H8. Pd-only catalyst using Ce0.75Zr0.25O2 as active washcoat showed high light off activity, the reaction temperatures (T50) of 50% conversion of CO, C3H8 and NO were 180, 200 and 205 °C, respectively. However, the conversions of C3H8 and NO showed oscillation with continuously increasing the reaction temperature. The presence of La2O3 in washcoat decreased the light off activity and suppressed the oscillation of C3H8 and NO conversion. After being aged at 900 °C for 4 h, the operation windows of catalysts shifted slightly to rich burn. The presence of La2O3 in active washcoat can enhance the thermal stability of catalyst significantly.  相似文献   

18.
The catalytic performance and the behavior of NOx storage and reduction (NSR) over a model catalyst for lean-burn gasoline engines have been mainly investigated and be discussed based on the temperature and reducing agents use in this study. The experimental results have shown that the NOx storage amount in the lean atmosphere was the same as the NOx reduction amount from the subsequent rich spike (RS) above the temperature of 400 °C, while the former was greater than the latter below the temperature of 400 °C. This indicated that when the temperature was below 400 °C compared with the NOx storage stage, the reduction of the stored NOx is somehow restricted. We found that the reduction efficiencies with the reducing agents decrease in the order H2 > CO > C3H6 below 400 °C, thus not all of the NOx storage sites could be fully regenerated even using an excessive reducing agent of CO or C3H6, which was supplied to the NSR catalyst, while all the NOx storage sites could be fully regenerated if an adequate amount of H2 was supplied. We also verified that the H2 generation more favorably occurred through the water gas shift reaction than through the steam reforming reaction. This difference in the H2 generation could reasonably explain why CO was more efficient for the reduction of the stored NOx than C3H6, and hinted as a promising approach to enhance the low-temperature performance of the current NSR catalysts though promoting the H2 generation reaction.  相似文献   

19.
The mechanism of the NO/C3H6/O2 reaction has been studied on a Pt-beta catalyst using transient analysis techniques. This work has been designed to provide answers to the volcano-type activity behaviour of the catalytic system, for that reason, steady state transient switch (C3H6/NO/O2 → C3H6/Ar/O2, C3H6/Ar/O2 → C3H6/NO/O2, C3H6/NO/O2 → Ar/NO/O2, Ar/NO/O2 → C3H6/NO/O2, C3H6/NO/O2 → C3H6/NO/Ar and C3H6/NO/Ar → C3H6/NO/O2) and thermal programmed desorption (TPD) experiments were conducted below and above the temperature of the maximum activity (Tmax). Below Tmax, at 200 °C, a high proportion of adsorbed hydrocarbon exists on the catalyst surface. There exists a direct competition between NO and O2 for Pt free sites which is very much in favour of NO, and therefore, NO reduction selectively takes place over hydrocarbon combustion. NO and C3H6 are involved in the generation of partially oxidised hydrocarbon species. O2 is essential for the oxidation of these intermediates closing the catalytic cycle. NO2 is not observed in the gas phase. Above Tmax, at 230 °C, C3H6 ads coverage is negligible and the surface is mainly covered by Oads produced by the dissociative adsorption of O2. NO2 is observed in gas phase and carbon deposits are formed at the catalyst surface. From these results, the state of Pt-beta catalyst at Tmax is inferred. The reaction proceeds through the formation of partially oxidised active intermediates (CxHyOzNw) from C3H6 ads and NOads. The combustion of the intermediates with O2(g) frees the Pt active sites so the reaction can continue. Temperature has a positive effect on the surface reaction producing active intermediates. On the contrary, formation of NOads and C3H6 ads are not favoured by an increase in temperature. Temperature has also a positive effect on the dissociation of O2 to form Oads, consequently, the formation of NO2 is favoured by temperature through the oxygen dissociation. NO2 is very reactive and produces the propene combustion without NO reduction. These facts will determine the maximum concentration of active intermediates and consequently the maximum of activity.  相似文献   

20.
The effect of the addition of a second fuel such as CO, C3H8 or H2 on the catalytic combustion of methane was investigated over ceramic monoliths coated with LaMnO3/La-γAl2O3 catalyst. Results of autothermal ignition of different binary fuel mixtures characterised by the same overall heating value show that the presence of a more reactive compound reduces the minimum pre-heating temperature necessary to burn methane. The effect is more pronounced for the addition of CO and very similar for C3H8 and H2. Order of reactivity of the different fuels established in isothermal activity measurements was: CO>H2≥C3H8>CH4. Under autothermal conditions, nearly complete methane conversion is obtained with catalyst temperatures around 800 °C mainly through heterogeneous reactions, with about 60–70 ppm of unburned CH4 when pure methane or CO/CH4 mixtures are used. For H2/CH4 and C3H8/CH4 mixtures, emissions of unburned methane are lower, probably due to the proceeding of CH4 homogeneous oxidation promoted by H and OH radicals generated by propane and hydrogen pyrolysis at such relatively high temperatures.

Finally, a steady state multiplicity is found by decreasing the pre-heating temperature from the ignited state. This occurrence can be successfully employed to pilot the catalytic ignition of methane at temperatures close to compressor discharge or easily achieved in regenerative burners.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号