首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
以LiH2PO4、Fe2O3及葡萄糖为原材料,采用高温高能球磨法(HTHEBM)制备了性能优良的碳包覆磷酸铁锂(LiFePO4/C)正极材料.在该法中,高能球磨将机械能转变为热能,有效降低了烧结温度且减少了烧结时间,在600℃下9 h烧结后获得纯相的LiFePO4/C正极材料.利用X射线衍射、扫描电镜、透射电镜、电化学性能测试等方法研究产物的结构、形貌及电化学性能.结果表明:所得LiFePO4/C材料为类球型橄榄石型结构,平均粒径为0.5μm;在0.1 C充放电倍率下,首次放电比容量为152.5 mAh·g-1;不同充放电倍率下,60次循环后放电比容量基本不变.与传统高温固相法及高温球磨法在相同条件下所制备的磷酸铁锂正极材料相比,本方法所得LiFePO4/C材料的性能明显较优.  相似文献   

2.
以氧化石墨烯和抗坏血酸为包覆碳源,采用共沉淀-焙烧法制备了LiFePO4/G和LiFePO4/C正极材料,并通过X-射线衍射图谱(XRD),扫描电镜(SEM)对合成材料进行结构及形貌分析,并采用循环伏安(CV)、恒电流充放电等表征手段对合成材料进行电化学性能测试。结果表明,石墨烯和碳颗粒的引入没有改变LiFePO4橄榄石晶体结构,石墨烯在细化颗粒和均匀分布上的效果优于普通碳颗粒,使LiFePO4/G表现出更加优越的电化学性能,在0.1C倍率时的放电容量为134 mAh·g-1,充放电循环20次后容量保持率可达到98.8%。  相似文献   

3.
以Li3PO4和Fe(3PO4).28H2O为原料,采用固相法成功制备了锂离子电池正极材料LiFePO4,并讨论了Li3PO4用量对材料的影响。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和充放电测试等手段对最终产物的物相、形貌和电化学性能进行了表征。结果表明,按计量比制备的LiFePO4样品具有较好的电化学性能,以0.1、0.5、1和5 C(1C=150 mA/g)的倍率进行充放电,首次放电比容量分别为135.6、123.8、116.2和56.5 mAh/g。磷酸锂过量8%制备的样品具有较好的高倍率性能,5C时放电比容量为80.3 mAh/g;而磷酸锂过量30%的样品则具有很好的小倍率放电比容量,0.1C时放电比容量为151.1 mAh/g。  相似文献   

4.
采用葡萄糖为碳源,通过固相合成法制备了掺碳的LiFePO4正极材料,并对样品的性能进行了研究分析.结果表明,少量的碳掺杂并未改变LiFePO4的晶体结构但显著改善了其电化学性能,LiFePO4/C样品的粒度较小粒径分布均匀,0.1 C首次放电比容量为141.9 mAh/g,循环50次后容量下降11.2 mAh/g,以1 C倍率首次放电比容量为126.5 mAh/g,循环50次后容量保持率为87.2%.  相似文献   

5.
采用固液结合法制备了LiFePO4正极材料。首先以共沉淀法制得了FePO4前驱体,再以葡萄糖作为碳源通过固相碳还原法制得目标产物LiFePO4。运用XRD和SEM对材料进行物理表征,恒流充放电和循环伏安测试对材料的电化学性能进行分析。结果表明,以固液结合法制备的材料结构单一,颗粒微细,粒径分布均匀,振实密度约为1.40g·cm-3,在室温0.1C下材料的放电比容量为156.8mAh·g-1,1.0C下放电比容量为126.2mAh·g-1,样品在1.0C下经过20次循环后,容量为120.4mAh·g-1,其容量保持率为95.4%。该法制备的材料既实现了液相法制备材料形貌可控的优点,又具备了碳还原与碳包覆同时作用的特点,材料的形貌,振实密度,和电化学性能均得到显著改善。  相似文献   

6.
采用溶胶-凝胶法,在溶胶阶段分别掺杂不同量的Gd3+、Ce4+、Sm3+和Tm3+制备了一系列具有橄榄石晶体结构的LiFePO4/C正极材料,通过X-射线衍射、扫描电镜和电池测试对其组成、形貌及电化学性能进行了表征。结果表明:Sm3+和Tm3+的掺杂会使LiFePO4/C的电化学性能变差,而掺杂1%(质量分数,下同)Gd3+或2%Ce4+会使LiFePO4/C的电化学性能提高,其中掺杂1%Gd3+的效果最好,0.1C下LiFePO4/C的首次放电比容量可达135.7mAh·g-1。  相似文献   

7.
气相沉积碳包覆磷酸铁锂的制备及性能   总被引:7,自引:2,他引:5  
磷酸铁锂是一种新型的锂离子电池正极材料,具有原材料来源丰富、价格低廉、对环境友好等特点.包覆碳及加碳制成复合材料是提高LiFePO4材料电导率的有效方法之一.实验中以苯为碳源,采用化学气相沉积方法在固相反应法制备LiFcPO4材料的过程中对材料表面进行碳包覆.用X射线衍射分析,扫描电镜和透射电镜对碳包覆LiFePO4材料的结构形貌进行了表征.用电池测试系统对其电化学性能进行了研究.结果表明:以苯为碳源的化学气相沉积方法合成的LiFePO4材料的平均粒径为200nm,材料表面均匀地包覆了4~5nm厚的碳层·电化学性能测试表明:碳包覆LiFePO4在O.1C倍率下放电容量达到151.6mAh/g,1 C放电容量达到125.8mAh/g,体现了良好的倍率放电特性和循环性能.  相似文献   

8.
本文以葡萄糖为碳源,采用原位复合法制备锂离子电池复合负极材料Li4Ti5O12@C,同时探讨了不同碳包覆量对Li4Ti5O12的影响。通过X-射线衍射和扫描电子显微镜对合成出的材料结构及表面形貌进行表征,采用恒电流充放电和电化学阻抗等技术对其进行电化学性能测试。结果表明:碳包覆量为3 %的Li4Ti5O12颗粒均匀且电化学性能最好。在0.5 C下,首次放电比容量为185.9 mAh/g,循环50次后,其放电比容量仍为161.5 mAh/g。在2.0 C下,首次放电比容量为99.9 mAh/g,材料表现出优良的电化学性能。  相似文献   

9.
改进固相法优化合成碳包覆磷酸亚铁锂正极材料   总被引:1,自引:0,他引:1  
锂铁比、葡萄糖加入量、焙烧温度、焙烧时间是影响LiFePO4正极材料电化学性能的4个重要因素。本文使用改进的固相法设计出一个四因素三水平的正交实验,对LiFePO4/C正极材料进行了优化合成,探讨了其优化合成条件,并合成出具有优良电化学性能的LiFePO4/C正极材料。使用XRD、SEM对合成产物进行结构分析;使用循环伏安、交流阻抗、放电比容量等对正极材料的电化学性能进行分析。此方法不使用球磨机,有利于工业化生产。室温下0.2 C倍率首次放电比容量为133.2 mAh/g,1.0 C倍率容量为112.5 mAh/g;30次循环活化后,0.2 C倍率容量稳定保持在133.1 mAh/g左右,1.0 C倍率容量则下降至106.8 mAh/g。  相似文献   

10.
采用两步固相法反应制备LiFePO4/C和LiFePO3.92F0.08/C。采用XRD对样品的结构进行分析。结果表明LiFePO3.92F0.08/C仍然具有橄榄石结构,但是相比于未掺杂的磷酸铁锂其具有更好的倍率性能和循环性能。LiFePO3.92F0.08/C在不同倍率下的放电比容量分别为141.7mAh/g(0.2 C)、113.2 mAh/g(1 C)、70.4 mAh/g(10 C)。尤其是在1 C倍率下循环30圈后,放电比容量仍达115.6 mAh/g。研究显示,F掺杂能够提高电子电导率进而显著改善其电化学性能。  相似文献   

11.
LiFePO4 modified by N-doped graphene (NG) with a three-dimensional conductive network structure was synthesized via a one-step in situ hydrothermal method. The effects of N amount of NG on the phase structure, morphology, and electrochemical properties of LiFePO4 are investigated in this study. X-ray diffraction (XRD) results show that doping suitable N amounts in NG do not alter the crystal structure of LiFePO4, and scanning electron microscopy (SEM) images show that NG can slightly reduce the particle size of LiFePO4. The high-resolution transmission electron microscopy (HRTEM) results show that the LiFePO4 particles are well covered and connected by NG. The electrochemical performance confirms that LiFePO4 modified by 20% N-doped graphene (named LFP/NG-4) displays a perfect specific capacity of 166.6 mAh·g?1 at a rate of 0.2C and can reach 125 mAh·g?1 at a rate of 5 C. Electrochemical impedance spectroscopy (EIS) results illustrate that the charge transfer resistance value of the LFP/NG-4 composite is only 58.6 Ω, which is very low compared with LiFePO4. Cyclic voltammetry (CV) tests indicate that the addition of 20% N-doped graphene can effectively reduce electrode polarization and improve reversibility. The LFP/NG-4 composite with a three-dimensional conductive network structure can be regarded as a promising cathode material for Li-ion batteries.  相似文献   

12.
刘长久  李培培  赵卫民  黄良花 《化工学报》2010,61(10):2743-2747
采用尿素均相沉淀法制备出稀土La和Zn复合掺杂α-Ni(OH)2样品材料,同时采用XRD、EDS、IR和TG-DSC热分析技术对样品的微结构和组成进行了测试,并研究了样品作为MH-Ni电池正极活性材料的电化学性能。结果表明,稀土La和Zn复合掺杂α-Ni(OH)2材料具有较大的晶格间距,其含有更多的结构H2O分子,电极反应的电荷转移电阻较低;样品材料电极在以0.1C充放,终止电压1.0V的制度下,其放电比容量高达372.85mAh.g-1,同时放电中值电压较高并稳定于1.30V,1C下其放电比容量高达344.07mAh.g-1,充放电循环30次容量保持率为93.04%,显示出良好的较大倍率放电性能和循环可逆及结构稳定性能。  相似文献   

13.
以醋酸锂、磷酸、七水合硫酸亚铁为原料,聚乙二醇为分散剂,通过一步水热法制备得到中空八面体LiFePO_4锂离子电池正极材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试仪对样品晶型、形电化学性能进行了表征测试。研究结果表明,在2.5~4.2 V电压范围内,以0.1 C(17 mA/g)倍率进行充放电,样品首次放电比容量为129.6 mA·h/g;0.2、0.5、1、2和5 C的充放电倍率时,首次放电比容量分别达到123.6、119.7、114.1、99.5g和90.6 mA·h/g。10 C的充放电倍率时首次放电比容量为84.3 mA·h/g,说明中空八面体LiFePO_4在高倍率下表现出优异的电化学性能。  相似文献   

14.
采用快速冷冻沉淀法首次成功制备出Fe(Ⅲ)和Al(Ⅲ)复合掺杂非晶态Ni(OH)2粉体材料。通过XRD、SAED、SEM、IR、Raman光谱及DSC-TG等对样品粉体的结构形态进行表征和分析,同时将样品合成电极材料并组装成MH/Ni模拟电池进行电化学性能测试,结果表明,样品材料内部结构缺陷多、无序性强、材料微粒大小比较均匀,并具有较好的分散性,结合水含量较多。将复合掺杂Fe(Ⅲ) 5%和Al(Ⅲ) 8%的样品材料制备镍正极并组装成MH/Ni模拟电池,在以80 mA·g-1恒流充电5.5 h,40 mA·g-1恒流放电,终止电压1.0 V的充放电制度下,进行充放电性能、比容量及其循环性能等电化学性能的测试,放电平台平稳,工作电压高达1.30 V,放电比容量达到357.6 mAh·g-1,且在电极过程中材料的稳定性增强、电化学阻抗较小,循环可逆性较好。  相似文献   

15.
A facile one-step hydrothermal method has been adopted to directly synthesize the CuCo2S4 material on the surface of Ni foam. Due to the relatively large specific surface area and wide pore size distribution, the CuCo2S4 material not only effectively increases the reactive area, but also accommodates more side reaction products to avoid the difficulty of mass transfer. When evaluated as anode for Li-ion batteries, the CuCo2S4 material exhibits excellent electrochemical performance including high discharge capacity, outstanding cyclic stability and good rate performance. At the current density of 200 mA·g−1, the CuCo2S4 material shows an extremely high initial discharge capacity of 2510 mAh·g−1, and the cycle numbers of the material even reach 83 times when the discharge capacity is reduced to 500 mAh·g−1. Furthermore, the discharge capacity can reach 269 mAh·g−1 at a current of 2000 mA·g−1. More importantly, when the current density comes back to 200 mA·g−1, the discharge capacity could be recovered to 1436 mAh·g−1, suggesting an excellent capacity recovery characteristics.  相似文献   

16.
脉冲电晕放电等离子体降解含4-氯酚废水   总被引:19,自引:1,他引:18  
考察了多种因素对高压脉冲电晕放电等离子体降解废水中4-氯酚效果的影响,同时对4-氯酚降解过程动力学进行了研究.提高脉冲电压峰值和气体的流量以及降低废水溶液的电导率均可提高4-氯酚的降解效果,而醇类化合物的存在将明显降低4-氯酚的降解率.4-氯酚的降解过程符合一级反应,降解速率常数与降解温度的关系符合Arrhenius公式.当废水的初始pH值为7.0、电导率为80μS•cm-1、脉冲电压峰值为30kV、放电频率为60Hz、放电电极直径为0.6mm、放电距离为3.0cm时,指前因子A=1.365×10-2min-1,实验活化能Ea= 5.129kJ•mol-1.得到了降解速率常数与脉冲电压峰值、放电频率、放电距离和初始氧气流量的关系.  相似文献   

17.
Recycling cathode materials from lithium-ion battery scraps can play a significant role in reducing environmental contamination and resource depletion. In this study, we employed pyrometallurgical techniques to regenerate LiMn2O4 cathode materials from recovered cathode scraps. First, the binder was removed under optimal conditions by a heating and stirring method to maximize the dissolution rate of the cathode scrap materials. Next, inductively coupled plasma spectroscopy was used to define the Li and Mn contents, and finally, the LiMn2O4 cathode material was regenerated by a pyrometallurgical method. After calcination under the optimum conditions of 500 °C for 12 h, electrochemical performance testing revealed obvious charge and discharge platforms in the charge/discharge curves; further, a high first-cycle discharge capacity was observed at 136.6 mAh·g-1 (3.0–4.3 V and 0.1 C), which decreased to 93 mAh·g-1 after 50 cycles. This process is low-cost and environmentally friendly, with the potential for recovering other cathode scrap materials.  相似文献   

18.
In this work, LiFePO4/C composites were prepared in hydrothermal system by using iron gluconate as iron source, and two feeding sequences during the preparation were comparatively studied. The morphology, crystal structure and charge–discharge performance of the prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and galvanostatic charge–discharge testing. The results showed that the feeding sequences and iron gluconate seriously affected the microstructures and electrochemical properties of the resulting LiFePO4 cathodes in lithium ion batteries. The spindle-shaped LiFePO4 with hierarchical microporous structure self-assembled by nanoparticles has been successfully synthesized by synthesis route B. In addition, the cell performance of the synthesized LiFePO4 by synthesis route B was better than that of LiFePO4 by synthesis route A. Specially at high rates, the superior rate performance of the spindle-shaped LiFePO4/C microstructure (LFP/C-B) was revealed. And special reversible capacities of ∼118 and ∼95 mAh g−1 were obtained at rates of 2 C and 5 C, comparing to ∼96 and ∼68 mAh g−1 for LFP/C-A.  相似文献   

19.
液相法合成高容量LiFePO4/C复合正极材料   总被引:7,自引:1,他引:7  
采用液相共沉淀法合成了纯相橄榄石型LiFePO4和LiFePO4/C复合正极材料。利用原子吸收(AAS)、X射线衍射(XRD)、扫描电镜(SEM)、振实密度测定等方法对其进行表征,并组装成电池研究其电化学性能。结果表明:LiFePO4和LiFePO4/C都具有单一的橄榄石型晶体结构,且前者的振实密度可达1.67 g/cm2,掺碳后制成的LiFePO4/C振实密度有所降低,但充放电平台非常平稳。与纯相LiFePO4相比,LiFePO4/C具有更高的放电比容量和循环性能,室温下以0.2 mA/cm2和0.4 mA/cm2电流密度充放电,首次放电比容量分别达到158.1 mA.h/g、150.0 mA.h/g。充放电循环20次后放电比容量仍分别保持在154.2 mA.h/g,137.2 mA.h/g。  相似文献   

20.
合成碳酸二甲酯PdCl2-CuCl2-KOAc/AC催化剂失活过程分析   总被引:2,自引:0,他引:2  
王淑芳  崔咏梅  赵新强  王延吉 《化工学报》2004,55(12):2008-2014
对气相直接合成碳酸二甲酯PdCl2-CuCl2-KOAc/AC催化剂失活问题进行了研究.结果表明:反应过程中氯的流失,使催化剂表面Cu2+/Cu+与Pd2+/Pd0比例发生变化,这是影响催化剂稳定性、造成催化剂可逆失活的一个重要因素.钯组分的流失、催化剂表面积炭和金属颗粒聚集等因素则直接造成了催化剂的不可逆失活.考察了不同反应条件对催化剂稳定性的影响,发现降低反应温度、提高反应压力和进料中氧气浓度可在一定程度上提高催化剂的稳定性.原料中配入一定浓度的含氯有机物作为补氯剂,可有效延长催化剂的寿命,当反应压力为0.3 MPa,补氯剂浓度为5%(体积分数)时,反应150 h后催化剂活性仍可稳定在700~750 g•L-1•h-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号