首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 937 毫秒
1.
采用标准k-ε双方程模型和SIMPLE方法对喷腾分解炉内流动特性进行了数值模拟,通过增设分解炉的中部缩口、柱体的尺寸、入口气流的流速以及增加旋流风,在不同条件下得到了炉内的流场分布情况,并进行了比较和分析,为分解炉的结构和工况的优化设计提供了参考依据。研究表明:喷腾分解炉内流场主要为喷射流,不易产生较强烈的横向混合和必要的逆向物料返混。结构和工况参数的变化,延长了气流的运行轨迹,适当地增加气流的横向运动,将有利于延长物料的停留时间、物料的分散和煤粉燃尽率和CaCO3分解率的提高。同时,数值模拟结果将为优化分解炉设计和流动参数提供理论依据。  相似文献   

2.
分解炉内气相湍流流动的数值模拟分析   总被引:2,自引:1,他引:2  
针对高原地区某分解炉的实际尺寸,采用Realizable(带旋流修正的)κ-ε双方程模型对分解炉内气相湍流流场进行数值模拟,分析了该分解炉内速度及湍动能分布特征,验证了该分解炉的设计合理性,为进一步研究分解炉优化设计提供了参考。  相似文献   

3.
以某水泥厂管道式分解炉为研究对象,采用CFD数值模拟方法,选取合适的数学模型,模拟分析褐煤在此分解炉系统中的流场特性、煤粉燃烧特性及煤粉燃烧耦合情况下碳酸钙分解情况.模拟结果表明:从分解炉锥体切向而来的三次风与来自窑尾缩口向上运动的高速烟气流相遇后,汇合成一股高速向上运动的主气流,煤粉流与生料流随着主气流在分解炉中心处向上螺旋式运动;煤粉的燃烧主要发生在分解炉下半柱体与锥体交界附近,并形成了高温区,且燃烧区域右侧燃烧情况优于左侧;在分解炉下柱体下半区域,碳酸钙迅速分解.在不进行SNCR脱硝处理的情况下,分解炉出口处NO含量仅为246.81 ppm,完全达到国家规定水平.  相似文献   

4.
针对华新水泥厂宜都生产线上的一种高效分解炉建立数学模型,采用k-ε模型对炉内的气相流场进行了数值模拟。数值计算结果从不同角度对速度场进行了分析,直观清晰地展现了分解炉内的气流运动规律。模拟结果预测了炉内气流在整体上螺旋上升而在局部存在大量回流运动的规律,为研究适合劣质燃料燃烧的炉型结构提供了重要的参考价值,并为进一步研究分解炉内的传热、传质及化学反应过程提供了理论依据。  相似文献   

5.
李昌勇 《水泥》2003,(8):17-20
对文山水泥厂1000t/d CDC分解炉进行了冷态模型试验以及综合分析与评价。结果表明CDC分解炉的气体三维流场分布基本合理,对延长停留时间和气固混合采取的措施发挥了一定效果。但涡壳部分旋流强度偏大,使分解炉阻力损失偏大,而中钵的流场结构对气固分散与均布也有一定的负面效应。CDC分解炉的料气停留时间比值为5.2~5.3,在国内现有各种分解炉中相对较高,该厂的CDC分解炉结构及容积与所用的煤粉能相互适应。  相似文献   

6.
我院设计的某项目DD型分解炉,其结构尺寸设计主要依据经验值,现业主方要求对设计结构合理性进行验证。为降低投资成本及缩短验证周期,本文采用数值模拟仿真技术取代传统试验方法,对所设计的分解炉建立相应三维模化理论模型,通过模拟其内部流场,得到相应的压力场、温度场、颗粒运动流场等值。根据模拟结果验证设计结构的合理性,同时找出优化设计方案。  相似文献   

7.
针对一实际尺寸的带下置涡流室的分解炉进行了数值模拟,探讨了煤、垃圾衍生燃料(RDF)两种燃料共燃与碳酸钙分解相耦合的化学反应过程。计算所得煤粉及RDF燃烬率分别为99%和100%,碳酸钙分解率为95%,与工程实际数据吻合较好。结果表明:煤粉自涡流室顶部入炉后,先向下俯冲,再在气流的携带下转而向上运动,在分解炉柱体部分螺旋上升,其燃烧时以焦炭燃烧占主导,在涡流室上方的锥体部分及锥体部分上方的下半柱体部分形成主燃区;RDF自分解炉柱体部分下部水平入炉后,先运动至中部,旋即与煤粉流交织在一起螺旋上升,其燃烧时以挥发分燃烧占主导,在分解炉下半柱体部分形成主燃区;CaCO3自涡流室顶部入炉后,首先在涡流室及其下方的锥体部分做涡旋运动,一部分因吸收高温气流的热量而分解,剩余大部分上旋至燃料主燃烧区,因吸收燃烧所释放的热量而分解;燃料燃烧放热与CaCO3吸热分解相耦合后,最终在分解炉柱体部分形成了均匀、稳定的温度场。  相似文献   

8.
针对两种带涡流室的同种类型不同炉膛尺寸不同生产效率的分解炉建立模型,运用流体力学软件,采用Euler坐标系下的Realizable k-ε模型对分解炉内的气相流场进行了模拟与对比分析。结果表明,两种分解炉内气流场规律一致,气流进入炉膛后沿分解炉壁面螺旋上升,在分解炉中心区域则形成了低速区;但是,炉膛直径小的分解炉内的气流平均停留时间稍短,约为6.70 s,而炉膛直径大的分解炉气流平均停留时间则更长,约为9.45 s,表明其旋流程度更强,更有利于延长物料在炉内的停留时间。  相似文献   

9.
DD分解炉内湍流流场的数值分析   总被引:5,自引:0,他引:5  
以气体湍流流动微分方程组及k-ε双方程模型为基础,采用Simple算法对DD分解炉内的湍流流场数值模拟,分析了炉内气体运动及湍流脉动规律和特点,并与冷模实验结果进行比较,验证数学模型的可行性,揭示了DD分解炉内部湍流流场的湍流特征.  相似文献   

10.
DD分解炉燃烧与分解耦合过程的数值模拟   总被引:2,自引:1,他引:1       下载免费PDF全文
针对一实际尺寸的DD分解炉进行了煤燃烧与碳酸钙分解耦合过程的三维数值模拟研究,其中,对连续相采用Euler坐标系下的k-ε双方程湍流模型,采用离散相模型(discrete phase model)进行颗粒相的运动轨迹计算,采用组分运输模型(species transport model)结合涡耗散概念模型(EDC)模拟煤粉燃烧及生料分解过程,采用P-1辐射模型计算气体和颗粒之间的辐射换热。计算所得煤粉燃烬率为86%,碳酸钙分解率为92.9%,与工程实际数据吻合较好,表明模拟结果的可信性。研究结果表明:来自底部向上运动的高速烟气流与两股横向三次风相遇后,汇合成一股高速向上运动的主气流,携带着煤粉流在分解炉中心处向上运动,并偏向位于分解炉侧面的出口方向;煤粉的燃烧主要发生在分解炉下半柱体部分中心处,并形成了高温区;碳酸钙则围绕着高温区迅速分解,其分解过程主要发生在分解炉下半柱体部分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号