首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
用热失重仪研究煤快速热解   总被引:4,自引:3,他引:4  
通过对原热失重仪气路进行改造 ,利用等温热重实验法研究快速加热条件下煤的热解 ,研究结果对认识气化炉内煤气化反应过程及设计、运行气化炉有重要意义 .研究表明 :煤从室温进到高温炉后 ,首先发生一个极快速裂解脱挥发分过程 ,它在 8s内可脱除绝大部分挥发物 ,然后是慢速脱挥发分过程 ;热失重仪炉温越高 ,煤挥发分析出量越大 ,有些煤快速热解可析出比其工业分析更多量的挥发分 ;煤越年轻 ,煤粒越细小 ,煤量越少 ,其挥发分析出量越大 ;煤粒快速热解焦渣电镜照片显示 ,焦渣颗粒黏结在一起 ,大颗粒表面有很深裂纹生成 ;煤挥发分的脱除速度是慢速热解 (升温速率 <40℃ /min)与快速热解的最大差异 .  相似文献   

2.
利用TG-DTG热分析仪对神府粉煤热解特性进行实验研究,考察升温速率、煤样粒径和载气流速对神府粉煤热解过程的影响,并通过正交实验确定最大失重速率的最佳条件.热重实验结果表明:升温速率、煤样粒径和载气流速对热解失重均有影响.升温速率和载气流速增大,热解失重量减少.粒径对热解失重率的影响呈抛物线分布,最大热解失重量存在最佳粒径,本实验所研究的粒径小于0.84mm的神府煤,热解过程中最佳粒径为0.25mm~0.42mm.正交实验结果表明:升温速率是影响煤热解过程的主要因素,其次是粒径,载气流速对热解影响最小;当神府煤的煤样粒径为0.25mm~0.42mm、升温速率为30℃/min、载气流速为120mL/min时,热解失重速率最大,为4.95%/min.  相似文献   

3.
为提高煤热解过程中焦油的产率,用非等温热重分析方法研究了不同粒径、热解终温和升温速率条件下长焰煤的热解过程和机理,分析了20和100℃/min升温速率下长焰煤热解过程特征,并求解了热解动力学参数。结果表明,煤颗粒在2.8mm以下时,粒径对热解过程影响较小;热解终温越高,热解最终固体产物中挥发分产率越低;升温速率越快,挥发分的析出速率越快。在同一升温速率下,不同热解温度段得到的活化能呈现两头大中间小的特征,且指前因子随活化能的增大而增大。  相似文献   

4.
通过对煤热解反应动力学分析,基于分布活化能模型DAEM,建立了集总反应动力学模型表示煤炭热解过程。确定了可以预测热解产物组成、分布与热解终温和升温速率关系的动力学方程。结果表明:随热解温度升高,各种挥发分产物析出率越来越接近最大产率;半焦C含量增加,但产率下降,H,O,N和S等元素降低。升温有利于提高半焦脱硫率、脱氮率。温度为600℃左右时,除H2外的大部分挥发分基本析出,半焦元素变化幅度减小。热解终温较低且一定时,较慢的升温速率有利于各热解挥发分最大限度析出。秦丽娜  相似文献   

5.
通过煤热解技术获取紧缺的油气资源是低阶煤清洁利用的有效途径之一。针对煤热解工艺存在焦油产率与品质难以控制以及焦油中粉尘含量高等关键技术问题,从煤的热解反应机理出发,详细探讨了热解挥发分二次反应的种类和发生条件以及影响热解过程的主要因素,结合煤热解技术应用,总结了逆向传热与传质所导致的挥发分气相二次反应是焦油产率下降的主要原因;同时,分析了热解过程中煤颗粒破碎机理以及煤热解过程中粉尘的主要来源。在前人研究结果的基础上,提出控制热解挥发分的流动方向从高温区向低温区流动、热解耦合气化以及耦合原位的焦油提质与除尘等方法可以调控煤热解过程,抑制重质焦油生成、提高焦油中轻质组分含量以及减少焦油中的含尘量,从而实现煤的定向热解。  相似文献   

6.
煤热解过程分析与工艺调控方法   总被引:3,自引:2,他引:1       下载免费PDF全文
陈兆辉  高士秋  许光文 《化工学报》2017,68(10):3693-3707
通过煤热解技术获取紧缺的油气资源是低阶煤清洁利用的有效途径之一。针对煤热解工艺存在焦油产率与品质难以控制以及焦油中粉尘含量高等关键技术问题,从煤的热解反应机理出发,详细探讨了热解挥发分二次反应的种类和发生条件以及影响热解过程的主要因素,结合煤热解技术应用,总结了逆向传热与传质所导致的挥发分气相二次反应是焦油产率下降的主要原因;同时,分析了热解过程中煤颗粒破碎机理以及煤热解过程中粉尘的主要来源。在前人研究结果的基础上,提出控制热解挥发分的流动方向从高温区向低温区流动、热解耦合气化以及耦合原位的焦油提质与除尘等方法可以调控煤热解过程,抑制重质焦油生成、提高焦油中轻质组分含量以及减少焦油中的含尘量,从而实现煤的定向热解。  相似文献   

7.
利用热重质谱分析仪(TG-MS)对热处理后肥煤样品的热解特性进行了研究,分析了热失重变化和挥发分析出规律.结果表明:随着煤样热处理温度的升高,热解过程中挥发分总产率逐渐减少,最大失重速率逐渐降低并向高温移动.在热解过程析出的挥发分中,轻气体主要有H_2,CO,CO_2和H_2O,烃类含有脂肪烃、环烷烃及苯、甲苯和二甲苯等;随着煤样热处理温度的升高,热解过程析出的挥发分中烃类减少,最大析出率对应的温度向高温移动;轻气体挥发分析出的温度区间较宽,在300℃到800℃之间.烃类析出的温度区间较窄,在400℃到600℃之间.  相似文献   

8.
生物质与煤共燃研究(Ⅱ)燃烧性质分析   总被引:11,自引:4,他引:11  
对低温热解生物质和煤共燃的燃烧性质进行了研究。在热解温度300℃,热解时间30min下对三种生物质(锯屑、谷壳和花生壳)的热解产品、长焰煤、无烟煤、热解锯屑和长焰煤混样(1:10)、热解锯屑和无烟煤混样(1:10)七个样品的燃烧热重分析发现:热解生物质的燃烧性能相近,组成结构相似,主要分为挥发分释放燃烧阶段和焦炭燃烧阶段,分别位于30℃-400℃和400℃-500℃之间,其出现分别较煤的温度低;长焰煤与热解锯屑混燃可以有效地降低着火温度,而热解锯屑与无烟煤混燃时,由于燃烧性质差异较大,是分别燃烧,不产生协同效果;热解锯屑与长焰煤、无烟煤共燃能够有效地提高煤的着火性能,在总体燃烧性能上,虽然热解锯屑明显好于长焰煤和无烟煤,但混合后对其改变不大。  相似文献   

9.
采用热重法(TGA)研究裂殖壶藻与煤混合的热解特性及混合热解过程的相互影响. 结果表明,煤和微藻的DTG曲线半峰宽分别为225和68℃,挥发分析出的起始温度分别为225和183℃. 可见煤挥发分析出较慢,温度区间较宽. 混合物中随微藻含量增大,挥发分综合特性释放指数逐渐增大,样品热解活性增强. 微藻与煤混合热解过程相互影响程度与样品比例有关. 当煤/藻质量比为1:1时,最大失重速率的计算值与测量值相差0.83%/min,两者在热解过程中存在一定的抑制作用;当煤/藻质量比为3:1和1:3时,两者相互影响不明显. 利用Coats-Redfern法分析热解过程符合一级反应动力学模型.  相似文献   

10.
分级处理秸秆的热解过程   总被引:10,自引:0,他引:10  
利用热重-傅立叶红外联用分析仪(TG-FTIR)研究了麦秸、汽爆麦秸、发酵麦秸的热失重特性及其气体析出行为. 实验表明,热失重过程主要分4个阶段:干燥阶段(30~150℃)、过渡阶段(150~200℃)、热解阶段(200~600℃)、炭化阶段(600~900℃);析出挥发分的机理过程分为2步:热解初始阶段发生脱羟基、脱羧基、脱烷基和解聚反应,析出含C?O?C基团、醇、醛、酸、酮和CO2, CO, H2O, CH4等气体化合物,炭化阶段发生脱烷基、羰基等反应,先后依次析出CH4, CO2, CO等气体. 汽爆、固态发酵分级处理麦秸不仅使热解干气的产率降低约20%~30%,热解液的产率增加,而且热解液中羧酸类产量分别减少了30%和50%左右.  相似文献   

11.
《应用化工》2022,(4):830-833
由于散煤燃烧会造成严重的环境污染,尤其是其排放的氮氧化物对大气环境破坏严重,煤热解作为煤燃烧、气化的伴随过程,具有重要的研究意义,而探究煤中氮元素在热解过程中的迁移规律,了解氮氧化物前驱物的生成条件对后续含氮污染物的控制起到决定性作用,在实际的热解过程中,多种因素共同制约着含氮物相的迁移方向,通过煤阶、粒径、热解温度、矿物质种类这些影响因素,可以得到:煤阶越高,挥发分越不易析出,在一定程度上,高煤化度煤氮易留在焦中,中等煤化度煤氮则易于进入挥发分中,煤颗粒粒径越大,挥发分也同样不易析出,而热解温度则对挥发氮和焦氮形成均有促进作用,不同金属离子对含氮物相析出有不同的效果。  相似文献   

12.
由于散煤燃烧会造成严重的环境污染,尤其是其排放的氮氧化物对大气环境破坏严重,煤热解作为煤燃烧、气化的伴随过程,具有重要的研究意义,而探究煤中氮元素在热解过程中的迁移规律,了解氮氧化物前驱物的生成条件对后续含氮污染物的控制起到决定性作用,在实际的热解过程中,多种因素共同制约着含氮物相的迁移方向,通过煤阶、粒径、热解温度、矿物质种类这些影响因素,可以得到:煤阶越高,挥发分越不易析出,在一定程度上,高煤化度煤氮易留在焦中,中等煤化度煤氮则易于进入挥发分中,煤颗粒粒径越大,挥发分也同样不易析出,而热解温度则对挥发氮和焦氮形成均有促进作用,不同金属离子对含氮物相析出有不同的效果。  相似文献   

13.
双玥  吴昌宁  颜彬航  程易 《化工学报》2010,61(12):3072-3079
热等离子体裂解煤制乙炔为超高温毫秒级反应过程,煤粉升温及脱挥发分过程直接决定了反应器的乙炔产率和经济性。建立了描述单颗粒煤粉高温快速裂解过程的机理模型,综合考虑了颗粒自身导热阻力及挥发分逸出煤粉所伴生的热阻效应。模型预测表明颗粒内部传热阻力显著影响煤粉的热裂解过程,与忽略颗粒内部传热阻力相比,脱挥发分时间减慢30%~40%,且颗粒粒径增大该影响越加明显;提高供热流体温度可加速、加强煤裂解反应深度。针对毫秒级煤裂解过程,大于100μm的煤粉或者低于2000K的热流体温度均难于实现满意的脱挥发分行为,所得结果为反应器的设计和操作提供了重要的指导。  相似文献   

14.
作者研究了100克煤在10Mpa 压力和加热至900℃条件下的固定床加氢热解。在固定床中处理的贝林根煤(其挥发分为32.8%重),其脱挥发分速度近似于快速加氢热解的脱挥发分速度,然而,油收率较少,因为煤的慢速加热,初次挥发物在反应空间的停留时间长,产品气中主要是甲烷。油的组成取决于热解温度,油中苯的含量随温度提高而增加。在温度恒定的  相似文献   

15.
以2种不同性质的炼焦煤为基础煤,以长焰煤热解萃取产物为改质剂,分别考察了改质剂对2种基础煤的挥发分、黏结指数、奥亚膨胀度等指标的改善结果。萃取产物对瘦煤挥发分的影响大于气煤;随改质剂加入量的增加,气煤的黏结指数缓慢增加,瘦煤的黏结指数显著增加;当改质剂加入量增加到5%时,气煤、瘦煤的软化-固化温度区间分别增大14.4℃、39.2℃。  相似文献   

16.
在冷态模拟实验和煤热解动力学计算的基础上,对粉煤气体热载体快速热解提升管反应器的高度进行了计算。利用高速摄像粒子测速法结合互相关算法研究了不同气体流量和不同颗粒粒径时固体颗粒在热解提升管中的运动速度,通过求解神府煤热解动力学方程,得到了不同粒径神府煤颗粒热解挥发分析出的时间,从而确定了快速热解提升管反应器的高度。研究结果表明:当气体流量在850 m3/h,粉煤的粒径主要集中在0.7—3.0 mm时,提升管的高度应选择在10.0 m。  相似文献   

17.
采用热重分析仪分别对废轮胎、煤及其混合样进行热解实验,研究废轮胎与煤的混合比例及热解升温速率对混合物失重特性的影响.结果表明:废轮胎和煤单独热解时发生剧烈缩聚反应,DTG曲线在400℃~480℃的温度区间有重叠部分;添加废轮胎对煤的热解有促进作用,随废轮胎质量分数的不断增加,煤的热解高峰区逐渐向低温区移动,且失重率不断提高;对混合样进行不同升温速率的热解实验发现,在较低的升温速率范围(15K/min~20K/min)内,增大升温速率可以促进热解反应的进行;而升温速率过高(20K/min)会使样品颗粒内部热解产生的挥发分来不及逸出而出现笼蔽效应,从而使样品的失重率减小.  相似文献   

18.
采用热重分析仪,对不同混合比例的煤泥混样进行热解特性及动力学研究。根据各试样的热重曲线(TG)和微熵热重曲线(DTG),计算热解特征参数和动力学参数,重点分析了生活污泥的添加量对神木煤热解过程的影响。结果表明:煤与生活污泥的热解过程有很大差异,主要表现在挥发分初析温度、总失重率及最大失重速率。随着污泥添加量的增加,煤泥混样热解各阶段的最大失重速率、热解总失重率逐渐增加,而热解初析温度及热解活化能逐渐减小,表明污泥的添加对煤的热解具有促进作用。污泥质量分数为90%时,煤泥混样的热解特性最优,挥发分综合释放特性指数D和热解活化能分别是煤单独热解时的2. 86倍和75%。  相似文献   

19.
以不同粒径范围的新疆准东煤为原料,在耦合下部流化床和上部输送床的复合流化床中热解制备兰炭,考察了热解温度、过量氧气系数、气化温度、煤颗粒停留时间等对热解产物分布和热解半焦性质的影响. 结果表明,随过量氧气系数、气化温度和颗粒平均停留时间增加,气体产率升高,半焦和焦油产率降低;半焦的比表面积随气化温度升高而增大,而随过量氧气系数增大先增大后减小. 当煤从下部流化床进料时,在过量氧气系数0.11、流化床气化温度850℃、输送床热解温度750℃、流化床内煤颗粒停留时间90 s的操作条件下,可制备出固定碳含量超过83%(w)、挥发分含量低于9%(w)的兰炭.  相似文献   

20.
采用热重分析法,选用煤和煤灰分别与陕北地区生活污泥和含油污泥进行共混,研究其热解特性。根据不同污泥的热重曲线和微熵热重曲线,计算热解特征参数和热解动力学参数,分析了煤及煤灰分别对生活污泥和含油污泥热解过程的影响。结果表明:添加50%污泥使得煤的热解初析温度Ts降低了159℃,总失重量R增加了38%,挥发分综合释放特性指数D提高了3倍;添加1%煤灰,含油污泥的热解最大失重速率(dw/dt)max增大14%,综合挥发分析出特性指数D增大16%。证明煤及煤灰分别与生活污泥和含油污泥的共混可提高其整体热解性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号