首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
PA66/PA1010共混物的研究   总被引:1,自引:0,他引:1  
研究了以硅烷类化合物为偶联剂的PA66/PA1010共混物。试验结果表明:PA66和PA1010具有很好的相容性,偶联剂用量在0.5%~0.7%时效果最佳;采用5%~10%PA1010与PA66共混可获得较高的机械性能。  相似文献   

2.
PP/PA6共混物的形态和流变性能   总被引:4,自引:0,他引:4  
将聚丙烯(PP)和聚酰胺6(PA6)共混可以使PP和PA6在性能上互补,所得共混物性价比很高。本文分析了PP/PA6共混物在共混时相容性和流变,性对其形态的影响。列举了目前PP/PA6增容剂的研究情况,二相相容时的简单动力学模型,以及分散相PA的含量、增容剂的种类、双螺杆挤出机熔融段的螺杆结构、螺杆转速、共混方式等影响PP/PA6共混物形态的因素。  相似文献   

3.
树形分子对PA11/PA6共混物性能的影响   总被引:5,自引:2,他引:3  
在PA11/PA6共混物中添加4.0代树形分子,提高了共混物的性能,研究了不同树形分子含量对共混物力学性能、耐热性和流动性的影响。结果表明,在PA11/PA6中添加0.25%树形分子后,共混物的拉伸强度、断裂伸长率明显提高,缺口冲击强度和维卡软化温度略有增加,但流动性有所下降。  相似文献   

4.
以聚丙烯接枝马来酸酐(PP-g-MAH)为相容剂,制备了聚丙烯(PP)/乙烯-乙烯醇共聚物(EVOH/)聚酰胺6(PA6)共混物,研究了PP/EVOH/PA6三元共混物的相容性、流变性能、阻隔性能、力学性能、热性能及形态结构。结果表明:相容剂与EVOH和PA6间发生了反应,提高了共混物的相容性;相容剂的加入提高了PP、EVOH、PA6的结晶温度,增强了PP与EVOH和PA6间的黏合力,降低了界面张力;EVOH占EVOH/PA6总量68%的三元共混物吸油率最小,当相容剂用量为5份时,PP/EVOH/PA6三元共混物吸油率比PP/EVOH二元共混物降低了8%。  相似文献   

5.
PP-g-DBM增容PP/PA6共混物的性能研究   总被引:5,自引:2,他引:3  
采用PP-g-DBM增容PP/PA6共混物,研究了增容共混物的力学性能和流变行为。结果表明,PP-g-DBM能改善PP/PA6共混物的相容性,显著提高共混物的力学性能;增容共混物的假塑性行为变强,粘流活化能增加熔体流动速率下降。  相似文献   

6.
从流变曲线、背散射光斑的积分强度、Debye—Bueche理论计算的相关距离和电子显微镜对PP/PA1010(90/10,体积比)共混体系的微观形态发展进行了讨论。结果表明,这一体系在共混初期(即1min以前)形态有较大变化,在共混1min以后,共混物的形态趋于稳态。  相似文献   

7.
LDPE接枝马来酸锌离聚物对PP/PA6共混体系相容性的影响   总被引:7,自引:1,他引:6  
林春雷 《塑料工业》1998,26(1):101-102,105
采用SEM和动态粘弹谱研究了不同接枝率的LDPE接枝马来酸锌离聚物(LDPE-g-MAZn)对PP/PA6共混体系相容性的影响。LDPE-g-MAZn采用熔融法合成,所制样品接枝率分别为1.5%(质量,下同)、4.5%和5.4%。研究结果表明,LDPE-g-MAZn能有效地改善PP/PA6共混物的相容性,其相容性随离聚物接枝率的提高而增强。在PP(90)/PA(10)体系中,加入离聚物后分散相(PA6)更均匀、粒子尺寸更小,而且随着离聚物接枝率的提高,PA6颗粒的粒径就越小,分散越匀;在PP(50)/PA(50)的体系中,离聚物的加入使两相互相贯穿,在动态粘弹谱上表现出Tg相互靠近,熔断温度有所提高。  相似文献   

8.
颜琳琳  李文刚  陈志强 《塑料》2005,34(6):14-17
通过扫描电镜(SEM)、差示扫描量热法(DSC)、傅立叶红外光谱(FTIR)研究了离聚物Surlyn对PTT/PA6共混物的相容性及形态结构的影响。PTT和PA6共混体系为热力学不相容体系,在共混物中加入一种离聚物聚甲基乙基丙烯酸锌(Surlyn),以提高共混物的相容性。实验结果表明,在以PTT为主体的PET/PA6简单共混物中,两者的相容性很差。加入离聚体Surlyn后,增加了界面粘接力,使分散相PA6的尺寸减小、分布趋向均匀。随着Surlyn的加入,PTT/PA/Surlyn共混体系的相容性得到了一定的提高。  相似文献   

9.
在PA11/PA6共混物中添加4.0代树形分子,提高了共混物的性能,研究了不同树形分子含量对共混物力学性能、耐热性和流动性的影响。结果表明,在PA11/PA6中添加0.25%树形分子后,共混物的拉伸强度、断裂伸长率明显提高,缺口冲击强度和维卡软件温度略有增加,但流动性有所下降。  相似文献   

10.
采用熔体共混的方法制备了聚酰胺11/聚酰胺1010(PA11/PA1010)共混物,通过力学性能和差示扫描量热(DSC)测试,研究了PA11/PA1010共混物的力学与结晶性能。测试结果表明:PA1010对PA11同时具有增韧、增强作用;当PA11/PA1010为70/30时,共混物开始出现两个结晶峰和低温熔融峰;共混物的结晶和熔融以PA11为主,兼具有PA11和PA1010的优良性能;断裂伸长率、拉伸强度与缺口冲击强度均达到极大值。  相似文献   

11.
采用分子动力学(MD)模拟方法对比研究了聚乙烯(PE)与聚苯乙烯(PS)共混体系和力化学反应法马来酸酐接枝聚乙烯(PE-g-MAH)与PS共混体系的相容性。通过对MD模拟得到的溶解度参数、玻璃化转变温度、径向分布函数和均方末端距的分析,对两种共混物的相容情况进行评价。研究表明,PS/PE体系的共混相容情况不好,而PS/PE-g-MAH体系相对于PS/PE体系,相容性得到明显改善。模拟结论与实验结果相一致。  相似文献   

12.
Blends of polypropylene copolymer (PP‐cp) and a polyolefinic elastomer (POE) were prepared by a melt‐blending process at 210°C and 60 rpm using a counterrotating twin‐screw extruder. The POE content was varied up to 25%. The shear viscosity over a wide range of shear rate was measured. All blend compositions showed well‐defined zero shear viscosity and shear thinning behavior. The melt viscosity values were between those of the principal components in all cases. Rheology of blends shows different behavior up to concentrations of POE corresponding to the tough–brittle transition. The linear viscoelastic properties (G′, G″, η*, η′, η″) were used to check the miscibility of the two components in the melt state. All blend compositions showed a good degree of miscibility over the range of POE concentrations studied. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 665–671, 2002; DOI 10.1002/app.10376  相似文献   

13.
One polypropylene (PP) was mixed with two ethylene butene copolymers (EBM). EBM1 had 12.5 mol % of butene and was immiscible with the PP. EBM2 had 51.6 mol % of butene and was miscible with the PP. The dispersed PP in EBM1 showed fractionalized crystallization behavior with a crystallization temperature at around 45°C and a much slower isothermal crystallization rate comparing to the neat PP. The PP did not exhibit fractionalized crystallization behavior in EBM2. EBM1 did not decrease both the crystallization and melting temperatures of the continuous PP. However, EBM2 could decrease both the two temperatures. It was found that EBM2 could largely suppress the epitaxial lamellar branching of the PP. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
The miscibility, crystallization behavior, and component interactions of two binary blends, poly(L ‐lactide) (L ‐PLA)/poly(vinylpyrrolidone) (PVP) and poly(D ,L ‐lactide) (DL ‐PLA)/PVP, were studied with differential scanning calorimetry and Fourier transform infrared (FTIR) spectroscopy. The composition‐dependent changes of the glass‐transition temperature (Tg) and degree of crystallinity (Xc) of the L ‐PLA phase indicated that L ‐PLA and PVP were immiscible over the composition range investigated. However, the sharp decrease of Xc with increasing PVP content in the second heating run demonstrated that the cold crystallization process of L ‐PLA was remarkably restricted by PVP. In DL ‐PLA/PVP blends, the existence of two series of isolated Tg's indicated that DL ‐PLA and PVP were phase‐separated, but evidence showed that there was some degree of interaction at the interface of the two phase, especially for the blends with low DL ‐PLA contents. FTIR measurements showed that there was no appreciable change in the spectra of L ‐PLA/PVP with respect to the coaddition of each component spectrum, implying the immiscibility of the two polymers. In contrast to L ‐PLA, the intermolecular interaction between DL ‐PLA and PVP was detected by FTIR; this was evidenced by the observation of a high‐frequency shift of the C?O stretching vibration band of PVP with increasing DL ‐PLA content, which suggested some degree of miscibility. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 973–979, 2003  相似文献   

15.
T.S. Omonov  C. Harrats  G. Groeninckx 《Polymer》2005,46(26):841-12336
Phase morphology development in ternary uncompatibilized and reactively compatibilized blends based on polyamide 6 (PA6), polypropylene (PP) and polystyrene (PS) has been investigated. Reactive compatibilization of the blends has been performed using two reactive precursors; maleic anhydride grafted polypropylene (PP-g-MA) and styrene maleic anhydride copolymer (SMA) for PA6/PP and PA6/PS pairs, respectively. For comparison purposes, uncompatibilized and reactively compatibilized PA6/PP and PA6/PS binary blends, were first investigated. All the blends were melt-blended using a co-rotating twin-screw extruder. The phase morphology investigated using scanning electron microscope (SEM) and selective solvent extraction tests revealed that PA6/PP/PS blends having a weight percent composition of 70/15/15 is constituted from polyamide 6 matrix in which are dispersed composite droplets of PP core encapsulated by PS phase. Whereas, a co-continuous three-phase morphology was formed in the blends having a composition of 40/30/30. This morphology has been significantly affected by the reactive compatibilization. In the compatibilized PA6/(PP/PP–MA)/(PS/SMA) blends, PA6 phase was no more continuous but gets finely dispersed in the PS continuous phase. The DSC measurements confirmed the dispersed character of the PA6 phase. Indeed, in the compatibilized PA6/(PP/PP–MA)/(PS/SMA) blends where the PA6 particle size was smaller than 1 μm, the bulk crystallization temperature of PA6 (188 °C) was completely suppressed and a new crystallization peak emerges at a lower temperature of 93 °C as a result of homogeneous nucleation of PA6.  相似文献   

16.
Both uncompatibilized and compatibilized blends based on polyamide 12 (PA12) and isotactic polypropylene (PP) were prepared in a Brabender Plastograph®. The compatibiliser used was maleic anhydride functionalized polypropylene (PP‐g‐MA). Phase morphology of the blends was inspected in scanning electron microscope (SEM) on cryogenically fractured etched surfaces of the specimens. PA12/PP blends possessed a nonuniform and unstable morphology owing to the incompatibility between their constituents. Addition of compatibiliser improved the interfacial characteristics of the blends by retarding the rate of coalescence. So, the phase morphology became more fine, uniform, and stable. Tensile properties of both uncompatibilized and compatibilized blends were measured as a function of blend composition and compatibiliser concentration. Uncompatibilized blends displayed inferior mechanical properties to compatibilized ones; especially for those containing 40–60 wt % of PP. Reactive compatibilisation of blends was found to be efficient and improved the tensile strength of the blends considerably. Addition of PP‐g‐MA improved the interfacial adhesion, decreased the interfacial tension, and thereby, enhanced the tensile strength by 85%. Finally, various models were adopted to describe the tensile strength of the blends. The experimental data exhibited a reasonably good fit with Nielsen's first power law model. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

17.
The phase behavior and the crystallization kinetics of blends composed of isotactic polypropylene (iPP) and linear low‐density polyethylene (LLDPE) were investigated by differential scanning calorimetry. The phase behavior indicates the formation of separate crystals of iPP and LLDPE at each investigated blend composition. The crystallization trace reveals that iPP crystallizes in its normal range of temperatures (i.e., at temperatures higher than that of LLDPE), when its content in the blend is higher than 25% by weight. In the blend whose iPP content is as high as 25%, at least a portion of iPP crystallizes at temperatures lower than that of LLDPE. This behavior has been proposed by Bassett to be attributed to a change in the kind of nucleation from heterogeneous to homogeneous. From the Avrami analysis of the isothermal crystallization of iPP in the presence of molten LLDPE, n values close to 2 are always obtained. According to our previously proposed interpretation of the Avrami coefficient, it can be related to the crystallite fractal dimension, through d = n + 1, which gives values close to 3, according to the spherulitic observed morphology. The kinetics parameter, i.e., the half‐time of crystallization, and the kinetic constant k show that a decrease in the overall rate of crystallization of iPP occurs on blending. Optical microscopy photographs, taken during the cooling of the samples from the melt, confirm the above results and show increasingly less resolved spherulite texture on increasing LLDPE content in the blend. The diffusion parameters evaluated for the neat polymers and for the blends in dichloromethane, which give information on the miscibility in the amorphous state, show that the diffusional behavior of the blends is governed by iPP, suggesting a two‐phase amorphous state. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3338–3346, 2003  相似文献   

18.
The compatibilization of polypropylene (PP)/nylon 6 (PA6) blends with a new PP solid‐phase graft copolymer (gPP) was systematically studied. gPP improved the compatibility of PP/PA6 blends efficiently. Because of the reaction between the reactive groups of gPP and the NH2 end groups of PA6, a PP‐g‐PA6 copolymer was formed as a compatibilizer in the vicinity of the interfaces during the melting extrusion of gPP and PA6. The tensile strength and impact strength of the compatibilized PP/PA6 blends obviously increased in comparison with those of the PP/PA6 mechanical blends, and the amount of gPP and the content of the third monomer during the preparation of gPP affected the mechanical properties of the compatibilized blends. Scanning electron microscopy and transmission electron microscopy indicated that the particle sizes of the dispersed phases of the compatibilized PP/PA6 blends became smaller and that the interfaces became more indistinct in comparison with the mechanical blends. The microcrystal size of PA6 and the crystallinity of the two components of the PP/PA6 blends decreased after compatibilization with gPP. The compatibilized PP/PA6 blends possessed higher pseudoplasticity, melt viscosity, and flow activation energy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 420–427, 2004  相似文献   

19.
Polypropylene/polyamide-6 (70:30) blends, containing dispersed discrete polyamide-6 microphases as matrix reinforcement, represent attractive materials for engineering applications. In order to enhance impact resistance, ethene/propene (EPM) was incorporated as a second separately dispersed microphase using reactive blending technology. Blend morphologies were controlled by adding maleic-anhydride-grafted-polypropylene (PP-g-MA) as compatibilizer during melt processing, thus enhancing dispersion and interfacial adhesion of the polyamide-6 phase. With PP-g-MA volume fractions increasing from 2.5 to 10 vol %, much finer dispersions of discrete polyamide-6 with average domain sizes decreasing from 8 to 0.8 μm were obtained. When polyamide-6 and ethene/propene (EPM)-rubber are dispersed simultaneously in the polypropylene matrix, impact resistance was improved. The influence of PP-g-MA volume fraction and blend morphologies on mechanical properties such as Young's modulus, yield stress, notched Charpy impact resistance was investigated. The ternary polypropylene/polyamide-6/EPM blend properties were compared with those of binary polypropylene blends containing the equivalent volume fraction of EPM. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Co-continuous morphology development in partially miscible PMMA/PC blends   总被引:1,自引:0,他引:1  
Poly(methyl methacrylate) (PMMA)/polycarbonate (PC) partially miscible blends were produced via melt blending in an internal mixer over the entire range of composition at two different viscosity ratios. The morphology of this low interfacial tension system was investigated by scanning electron microscopy, solvent extraction/gravimetry and surface area measurement (BET) after selective extraction. The partial miscibility of these blends was evaluated by Tg measurements from dynamic mechanical thermal analysis. The co-continuous morphology development curve obtained from gravimetry is commonly reported in the literature as the %continuity vs. the vol% fraction of the dispersed phase for fully phase separated systems. Such systems possess pure phases of A and B. Partially miscible blends on the other hand demonstrate immiscibility between an A-rich phase and a B-rich phase. Quantitative estimation of the partial composition of the minor components in each respective rich phase was calculated using the Fox equation. Using this data, an approach to correcting the gravimetry results to take into account the partial miscibility of the PMMA/PC system is proposed. The co-continuous morphology development curve is then presented as the %continuity vs. the vol% fraction of the PMMA-rich phase. This corrected curve demonstrates the features of a highly interacting polymer blend: a low percolation threshold and a broad co-continuity region. The BET technique shows that the pore size of the extracted co-continuous blends is dependent on composition, the pore diameter increases with total PMMA content. Use of a low molecular weight PC shifts the co-continuous morphology development curve to higher volume fraction values of PMMA-rich phase. It is suggested that this is the result of a lower dispersed phase thread stability due to the lower matrix viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号