首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Selective oxidation of methane to methanol and formaldehyde at atmospheric pressure was studied over a series of silicasupported FePO4 catalysts, with iron phosphate content ranging from 2 to 16 wt%. Performance was evaluated over the range T=773–963 K, GHSV=25,000–65,000 h–1, and CH4 : O2=1. The main products were formaldehyde, carbon monoxide and carbon dioxide. Small, but quantifiable amounts of methanol were also observed. Catalytic activity exhibited a clear dependence on the iron phosphate content. The highest selectivity and space time yield (STY) to formaldehyde and methanol were observed for 2 wt% FePO4 on silica (STY of 622 and 25 g/kgcat h, respectively). The selectivity–conversion pattern suggests that methane is oxidized directly to methanol and formaldehyde, and sequentially to carbon oxides. Characterization was performed by Xray powder diffraction, Xray photoelectron spectroscopy, and Mössbauer spectroscopy. Crystalline FePO4 is observed at all loading levels, however, a significant fraction of the iron (58% at 2 wt% FePO4) is present in an Xray amorphous phase. Mössbauer spectra suggest that this phase contains iron in fivefold coordination, and with a higher electron density relative to bulk FePO4. The amount of this fivecoordinate phase present is roughly 1 wt% Fe, independent of total iron loading. XPS confirms the lower effective oxidation state of iron, and indicates that at low loading the surface is enriched in phosphorus relative to bulk FePO4. It is proposed that iron in fivefold coordinate sites, isolated by phosphate groups, more selectively activates methane than crystalline FePO4. As loading increases, so does the amount of crystalline FePO4, which is proposed to more rapidly catalyze sequential oxidation of the selective products.  相似文献   

2.
Partial oxidation of methane by oxygen to form formaldehyde, carbon oxides, and C2 products (ethane and ethene) has been studied over silica catalyst supports (fumed Cabosil and Grace 636 silica gel) in the 630–780 °C temperature range under ambient pressure. The silica catalysts exhibit high space time yields (at low conversions) for methane partial oxidation to formaldehyde, and the C2 hydrocarbons were found to be parallel products with formaldehyde. Short residence times enhanced both the C2 hydrocarbons and formaldehyde selectivities over the carbon oxides even within the differential reactor regime at 780 °C. This suggests that the formaldehyde did not originate from methyl radicals, but rather from methoxy complexes formed upon the direct chemisorption of methane at the silica surface at high temperature. Very high formaldehyde space time yields (e.g., 812 g/kg cat h at the gas hourly space velocity = 560 000 (NTP)/kg cat h) could be obtained over the silica gel catalyst at 780 °C with a methane/air mixture of 1.5/1. These yields greatly surpass those reported for silicas earlier, as well as those over many other catalysts. Low CO2 yields were observed under these reaction conditions, and the selectivities to formaldehyde and C2 hydrocarbons were 28.0 and 38.8%, respectively, at a methane conversion of 0.7%. A reaction mechanism was proposed for the methane activation over the silica surface based on the present studies, which can explain the product distribution patterns (specifically the parallel formation of formaldehyde and C2 hydrocarbons).  相似文献   

3.
A series of silica-supported molybdena catalysts with variable molybdenum content has been prepared and tested in the selective oxidation of methane to formaldehyde. The nature of the supported oxide phases has been studied by Fourier transform IR of chemisorbed NO molecule, X-ray photoelectron spectroscopy, UV-Visible reflectance and X-ray diffraction techniques. The results show that molybdenum oxide is highly dispersed on the silica at low molybdenum concentrations where two-dimensional polymolybdates are developed. Three-dimensional MoO3 crystals grow in the region of high molybdenum concentrations. The analysis of the combined data suggests that there is a close relationship between methane conversion and formaldehyde selectivity and the presence of highly dispersed polymolybdate structures on the silica surface.  相似文献   

4.
Mo-Cr-V-Bi-Si multi-component oxide catalysts were synthesized by three different coprecipitation methods and used in the controlled oxidation of methane to methanol and formaldehyde. It was shown that Mo content in Mo-V-Cr-Bi-Si oxides and the performance of these catalysts were strongly influenced by different coprecipitation methods. The highest methanol and formaldehyde selectivity of 80.2% could be achieved at a methane conversion of 10 % for the catalyst prepared by a particular method. The results of XRD indicated that the crystalline phase structures of catalysts were sensitive to Mo, V and Bi loadings. Bi(III) could combine with V(V) and Mo(VI) to form BiVO4 and γ-Bi2MoO6, whereas Cr seemed to form a single Cr2O2 crystalline phase in the presence of Bi. The effects of Mo and Cr loading on controlled methane oxidation were also investigated. Mo(VI) oxide appears to favor the formation of partial oxidation products and Cr(III) oxide seems to enhance the conversion of methane.  相似文献   

5.
Ni- and Co-based catalysts derived from NiAl- and CoAl-layered double hydroxides were tested in four kinds of reactions of methanol, namely decomposition of methanol (DCM), partial oxidation of methanol (POM), steam reforming of methanol (SRM), and oxidative steam reforming of methanol (OSRM), for the purpose of H2 production for fuel cells. H2, CO and/or CO2 were the predominant products with minor amounts of dimethyl ether (DME) and CH4 depending on the reaction temperature. Among the four kinds of reactions tested, the OSRM reaction was found to be more effective in terms of MeOH conversion and H2 selectivity over these catalysts. Higher selectivity of H2 and CO2 with only traces of CO could be obtained at about 100% methanol conversion around 300 °C in the OSRM reaction over the catalyst derived from CoAl-LDH. Substitution of a part of Al by Sn in the NiAl- and CoAl-LDH systems was found to be inhibiting the methanol conversion. On the other hand, the selectivities to DME and CH4 were declined with a consequent increase in the selectivity to H2. In addition, considerable amount of formaldehyde was also noticed, especially over the catalyst derived from CoAlSn-LDH at lower reaction temperatures. The observed difference in the catalytic performance upon Sn incorporation was attributed to an improved redox capability of the Ni- and Co-based oxide catalysts, as determined by temperature-programmed reduction (TPR) experiments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Partial oxidation of methane to methanol via post-plasma catalysis using a dielectric-barrier discharge was performed under mild reaction conditions. Air was used as the oxidizing co-reactant because of its economical practicality. Three catalysts impregnated with Pt, Fe2O3, CeO2 on ceramic supports located downstream of the discharge zone were examined for increased selectivity towards methanol. It was found that all three catalysts had no significant effect on the conversion of methane, but enhanced methanol selectivity, which could be explained by a two-stage reaction mechanism. The Fe2O3-based catalyst showed the best catalytic activity, and high stability in the reaction. The methanol selectivity of the Fe2O3-assisted plasma process was 36% higher than that of the non-catalytic system at a rather low catalyst temperature (150 °C). In addition, the effects of input power, discharge frequency, discharge gap distance, total flow rate, and methane/air ratio on methane conversion and methanol yield were also studied.  相似文献   

7.
The selective oxidation of methane with molecular oxygen over MoOx/La–Co–O and MoOx/ZrO2 catalysts to methanol/formaldehyde has been investigated in a specially designed high-pressure continuous-flow reactor. The properties of the catalysts, such as crystal phase, structure, reducibility, ion oxidation state, surface composition and the specific surface area have been characterized with the use of XRD, LRS, TPR, XPS and BET methods. MoOx/La–Co–O catalysts showed high selectivity to methanol formation while MoOx/ZrO2 revealed the property for the formation of formaldehyde in the selective oxidation of methane. 7 wt MoOx/La–Co–O catalyst gave 6.7 methanol yield (ca. 60 methanol selectivity) at 420°C and 4.2 MPa. On the other hand, the maximal yield of formaldehyde ca. 4 (47.8 formaldehyde selectivity) was obtained over 12wt MoOx/ZrO2 catalyst at 400 °C and 5.0MPa. 7MoOx/La–Co–O catalyst showed higher modified H2-consumption than 12MoOx/ZrO2 catalyst. The reducibility and the O/O2– ratio of the catalysts may play important roles on the catalytic performance. The proper reducibility and the O/O2– ratio enhanced the production of methanol in selective oxidation of methane. [MoO4]2– species in MoOx/ZrO2 catalysts enable selective oxidation of methane to formaldehyde.  相似文献   

8.
9.
The performance of different Cu/CeO2/Al2O3 catalysts of varying compositions is investigated for the oxidative steam reforming of methanol (OSRM) in order to produce the hydrogen selectively for polymer electrolyte membrane (PEM) fuel cell applications. All the catalysts were prepared by co-precipitation method and characterized for their surface area, pore volume and oxidation–reduction behavior. The effect of various operating parameters studied are as follows: reaction temperature (200–300 °C), contact-time (W/F = 3–15 kgcat s mol− 1) and oxygen to methanol (O/M) molar ratio (0–0.5). The steam to methanol (S/M) molar ratio = 1.5 and pressure = 1 atm were kept constant. Among all the catalysts studied, catalyst Cu–Ce–Al:30–20–50 exhibited 100% methanol conversion and 179 mmol s− 1 kgcat− 1 hydrogen production rate at 280 °C with carbon monoxide formation as low as 0.19%. The high catalytic activity and hydrogen selectivity shown by ceria promoted Cu/Al2O3 catalysts is attributed to the improved specific surface area, dispersion and reducibility of copper which were confirmed by characterizing the catalysts through temperature programmed reduction (TPR), CO chemisorption, X-ray diffraction (XRD) and N2 adsorption–desorption studies. Reaction parameters were optimized in order to produce hydrogen with carbon monoxide formation as low as possible. The time-on-stream stability test showed that the Cu/CeO2/Al2O3 catalysts were quite stable.  相似文献   

10.
Methanol selective oxidation to formaldehyde over a modified Fe-Mo catalyst with two different stoichiometric (Mo/Fe atomic ratio = 1.5 and 3.0) was studied experimentally in a fixed bed reactor over a wide range of reaction conditions. The physicochemical characterization of the prepared catalysts provides evidence that Fe2(MoO4)3 is in fact the active phase of the catalyst. The experimental results of conversion of methanol and selectivity towards formaldehyde for various residence times were studied. The results showed that as the residence time increases the yield of formaldehyde decreases. Selectivity of formaldehyde decreases with increase in residence time. This result is attributable to subsequent oxidation of formaldehyde to carbon monoxide due to longer residence time.  相似文献   

11.
Various nitroaromatics are successfully reduced to amines with 100% conversion and selectivity in methanol at low temperature (≈5 °C), by using versatile system of 5% Ni–SiO2 catalyst and NaBH4 and in situ generation of Ni boride. The catalytic efficiency of Ni loading (5%, 10% and 15%) with silica or titania as support materials is investigated for reduction of nitrobenzene. The Ni–titania/NaBH4 system recorded lower conversion and selectivity. The IR studies indicate that silica support does not have free –OH group on its surface. Thus the nickel boride is anchored to the silica to facilitate the catalytic process.  相似文献   

12.
The oxidative coupling of methane to C2-hydrocarbons (OCM) over a La2O3/CaO catalyst (27 at.%) was investigated in an internally circulating fluidized-bed (ICFB) reactor (IDeff = 1.9 cm, Hriser = 20.5 cm). The experiments were performed in the following range of conditions: T = 800?900°C, pCH4:pO2pN2 = 57.1–64:16–22.9:20 kPa. The obtained C2 selectivities and C2 yields were compared with the corresponding data from a spouted-fluid-bed reactor (ID = 5 cm) and a bubbling fluidized-bed (FIB) reactor (ID = 5 cm). The maximum C2 yield in the internally circulating fluidized-bed (ICFB) reactor amounted to 12.2% (T = 860°C, 38.7% C2 selectivity, 31.5% methane conversion), whereas in the FIB reactor a maximum C2 yield of 13.8% (T = 840°C, 40.4% C2 selectivity, 34.2% methane conversion) was obtained. The lowest C2 yield was achieved in the spouted-bed (SFB) reactor (Y = 11.6%, T = 840°C, 36.2% C2 selectivity, 32.0% methane conversion). The highest space-time yield of 24.0 mol/kgcat.h was obtained in the ICFB reactor, whereas in a FIB reactor only a space-time yield of 9.6 mol/kgcatcould be obtained. The performance of the ICFB reactor was strongly influenced by gas-phase reactions. Furthermore, stable reactor operation was possible only over a narrow range of gas velocities.  相似文献   

13.
The influences of support (silica or titania) and loading of Fe promoter on the activity and selectivity of Rh-based catalysts for the direct synthesis of ethanol from syngas were explored. The reaction was performed in a fixed-bed reactor system typically operating at 543 K, 20 atm, WHSV of 8000 cm3 g?1cat h?1 and H2:CO ratio of 1:1. Characterization by H2 chemisorption and electron microscopy indicated that rhodium was very highly dispersed on the supports and was in direct contact with the Fe promoter. Although little ethanol was produced over 2 wt% Rh on silica, a similar loading of Rh on titania was active for this reaction. Promotion of 2 wt% Rh/SiO2 by 1 wt% Fe produced a catalyst that exhibited a 22% selectivity to ethanol, with methane being the primary side-product. Addition of Fe to 2 wt% Rh/titania also improved the selectivity to ethanol with the highest selectivity being 37% for a sample with 5 wt% Fe. The effects of temperature, pressure and H2:CO ratio on the performance of 2 wt% Rh/TiO2 and 2 wt% Rh–2.5 wt% Fe/TiO2 were also studied. Although the influence of pressure and H2:CO ratio was moderate, higher temperatures clearly increased methane production at the expense of ethanol and methanol. Adsorption and thermal desorption of CO in Ar or H2 were also studied by DRIFTS spectroscopy on 2 wt% Rh/TiO2 and 2 wt% Rh–2.5 wt% Fe/TiO2. The gem-dicarbonyl species that was the primary species on these catalysts at room temperature after exposure to CO was more thermally stable on the Fe-promoted catalyst.  相似文献   

14.
The introduction of carbon tetrachloride to the feed stream in the conversion of methane to C2 hydrocarbons over a variety of silica-supported oxides is shown to alter both the conversion and selectivity, but, notably with oxides of Ba, Cs and Mn produces remarkable increases in the yield and selectivity to C2H4 and C2H6, particularly the former.  相似文献   

15.
The addition of a small amount of tetrachloromethane to the reactant stream in the conversion of methane by nitrous oxide increases the yield of partial oxidation product formaldehyde over silica-supported 12-molybdophosphoric acid (H3PMo12O40), but selectively produces monochloromethane over silica-supported 12-tungstophosphoric acid (H3PW12040).  相似文献   

16.
Ni catalysts promoted with 0.5 and 1.0 wt% boron were synthesized, characterized and tested during steam methane reforming, to evaluate the effect of boron on the deactivation behavior. Boron adsorbs on the γ-Al2O3 support and on the Ni particles and 1.0 wt% boron is found to enhance the stability without compromising the activity. Catalytic studies at 800 °C, 1 atm, a stoichiometric methane to steam ratio, and space velocities of 330,000 cm3/(h gcat) show that promotion with 1.0 wt% boron reduces the rate of deactivation by a factor of 3 and increases the initial methane conversion from 56% for the unpromoted catalyst to 61%. Temperature-programmed oxidation (TPO) and scanning electron microscopy (SEM) studies confirm the formation of carbonaceous deposits and illustrate that 1.0 wt% boron reduces the amount of deposited carbon by 80%.  相似文献   

17.
The current commercial multistage reactor for methanol to propylene (MTP) process suffers from poor propylene selectivity and catalyst efficiency, mainly because of the low inlet methanol concentration and long residence time. In this work, we proposed an autothermal co-current flow reactor for MTP process, where the reaction heat is continuously removed through heat exchange with cold reactants, thus single-stage reactor can be used with higher methanol inlet concentration. The reactor feasibility was investigated by a three-dimensional multiscale model, in which the diffusion–reaction interaction inside catalyst particle was described by a neural network model trained by machine learning. With the feeding methanol fraction increasing to 30%, propylene selectivity reaches 82.27% while the space velocity approaches 2.68 gMeOH gcat−1 h−1 at 99.97% methanol conversion, about 1.4 and 3.8 times those of a commercial multibed reactor, respectively. With proper catalyst bed dilution, the reaction temperature is well controlled between 700 and 754 K.  相似文献   

18.
This paper presents a performance analysis of a dual-bed autothermal reformer for hydrogen production from methane using a non-isothermal, one dimensional reactor model. The first section of Pt/Al2O3 catalyst is designed for oxidation reaction, whereas the second one based on Ni/MgAl2O4 catalyst involves steam reforming reaction. The simulation results show that the dual-bed autothermal reactor provides higher reactor temperature and methane conversion compared with a conventional fixed-bed reformer. The H2O/CH4 and O2/CH4 feed ratios affect the methane conversion and the H2/CO product ratio. The addition of steam at lower temperatures to the steam reforming section of the dual-bed reactor can produce the synthesis gas with a higher H2/CO product ratio.  相似文献   

19.
甲醇和甲醛催化合成聚甲氧基二甲醚   总被引:12,自引:5,他引:7       下载免费PDF全文
聚甲氧基二甲醚作为柴油添加剂,可以提高柴油的十六烷值(CN),提高燃油的利用率,作为甲醇大宗下游产品具有广阔的应用前景。在固定床管式反应器中,以改性大孔阳离子交换树脂为催化剂,在温度40~100℃、液相空速1.32~16.37 h-1、甲醛/甲醇摩尔比1~4和反应压力0.1~3.0 MPa下,以单因素实验和正交实验相结合的方式,系统地研究了甲醛与甲醇缩醛化工艺条件,获得了较佳的工艺条件,在温度70℃、甲醛/甲醇摩尔比3:1、液相空速1.32 h-1、反应压力2.0 MPa的条件下,甲醇的转化率为69.72%,DMM3-8选择性为62.08%。  相似文献   

20.
Molybdenum based mixed oxide containing Mo0.65V0.25W0.10 was investigated for the partial oxidation of methanol. The structural property and catalytic activity of the mixed oxide catalyst was studied by surface area (BET), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infra-red spectroscopy (FTIR) and X-ray diffraction (XRD). The thermal activation of the catalyst resulted increase in the conversion of methanol and the selectivity to formaldehyde. The thermal activation of the MoVW mixed oxide in nitrogen atmospheres induces partial crystallization of a Mo5O14-type oxide at 813 K. The SEM images of the thermally activated catalyst show needle like particles. These particles were agglomerates of platelet-like crystallites of a few hundreds of nanometers in size. SEM and EDX techniques show that the mixed oxide is characterized by an inhomogeneous elemental distribution on the length scale of a few microns. XRD of the thermally activated catalyst showed a nanocrystalline material identified as a mixture of Mo5O14, MoO3 and MoO2-type MoVW oxides. The catalytic activity of the MoVW mixed oxide show a good conversion of methanol and selectivity to formaldehyde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号