首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Single-phase Bi4NdTi3Fe0.7Ni0.3O15 polycrystalline samples were synthesized following a multicalcination procedure. The sample exhibited multiferroic property at room temperature, which was demonstrated by the ferroelectric (2Pr=8.52 μC/cm2, 2Ec=89 kV/cm at applied electric field 110 kV/cm) and magnetic (2Mr=388 m emu/g, 2Hc=689 Oe at applied magnetic field 1.04 T) hysteresis loops. More importantly, magnetoelectric coupling effect is observed from measurements of electrical properties not only under small but also under large electric signal when an external magnetic field is applied. The present results suggest a new candidate for a room temperature multiferroic material with magnetoelectric coupling effect.  相似文献   

2.
Doped hexagonal BaTiO3 (h-BaTiO3) ceramics have recently been identified as potential candidates for use in microwave dielectric resonators. However, similar to other common microwave ceramics, doped h-BaTiO3 ceramics require a sintering temperature higher than 1400 °C. In this study, the effects of Bi2O3 and Li2CO3 on the densification, microstructural evolution and microwave properties of hexagonal 12R-Ba(Ti0.5Mn0.5)O3 ceramics were examined. Results indicate that Bi2O3 and Li2CO3 are able to effectively reduce the sintering temperature of 12R-Ba(Ti05Mn0.5)O3 ceramics through liquid phase sintering while retaining the hexagonal structure and the microwave dielectric properties. The best results were obtained for the 12R-Ba(Ti0.5Mn0.5)O3 with the additions of 5 wt% Bi2O3 sintered at 1200 °C (?r: 36.0, Qfr: 6779 GHz, and τf: 25.3 ppm/°C), and 5 wt% Li2CO3 sintered at 1200 °C (?r: 28.1, Qfr: 5304 GHz, and τf: 35.3 ppm/°C).  相似文献   

3.
(Bi0.5Na0.5)0.94Ba0.06TiO3xHfO2 [BNBT–xHfO2] lead-free ceramics were prepared using the conventional solid-state reaction method. Effects of HfO2 content on their microstructures and electrical properties were systematically studied. A pure perovskite phase was observed in all the ceramics with x=0–0.07 wt%. Adding optimum HfO2 content can induce dense microstructures and improve their piezoelectric properties, and a high depolarization temperature was also obtained. The ceramics with x=0.03 wt% possess optimum electrical properties (i.e., d33~168 pC/N, kp~32.1%, Qm~130, εr~715, tan δ~0.026, and Td~106 °C, showing that HfO2-modified BNBT ceramics are promising materials for piezoelectric applications.  相似文献   

4.
Ba0.8Sr0.2Ti1−5x/4NbxO3 ceramics, x = 0, 0.01, 0.05, 0.10, were fabricated by conventional solid-state reaction. With increasing niobium content the ferroelectric phase transition temperature decreases linearly, and the dispersivity of the transition increases. Niobium B-site decreases transition temperature more pronounced than Sr2+ at A-site. The heterovalent substitution of Nb5+ in low content causes local defect dipole, while more substitutions introduce disorder to disturb the long-range dipole correlation. Ba0.8Sr0.2Ti1−0.5/4Nb0.1O3 ceramic shows weak ferroelectric loop at room temperature far from its transition temperature, 153 K.  相似文献   

5.
A new compound of barium bismuth neodymium titanate BaBi3.5Nd0.5Ti4O15 was synthesized using the traditional solid-state reaction method. X-ray diffraction analysis confirmed the compound to be a layered tetragonal structure and Raman spectrum indicated that Nd ions occupy the A site. The plate-like morphology with average grain size about 2–4 μm was observed by a scanning electron microscope (SEM). A precision impedance analyzer was used to measure the dielectric properties and impedance spectroscopy of the ceramics. The results show that the temperature of dielectric constant maximum (Tm), the room temperature dielectric constant (εr) and loss (tan δ) at 100 kHz are 287° C, 326 and 0.017, respectively. The modified Curie–Weiss law was used to describe the relaxor behavior of the ceramics which was attributed to the A site cationic disorder. The remnant polarization (2Pr) of the sample was observed to be 1.27 μC/cm2 at room temperature.  相似文献   

6.
Nd2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 (abbreviated to BNKT) binary lead-free piezoelectric ceramics were synthesized by the conventional mixed-oxide method. The results show that the BNKT ceramics with 0–0.15 wt.% Nd2O3 doping possesses a single perovskite phase with rhombohedral structure. The grain size of BNKT decreased with the addition of Nd2O3 dopant. The temperature dependence of the dielectric constant ?r revealed that there were two-phase transitions from ferroelectric to anti-ferroelectric and anti-ferroelectric to paraelectric. A diffuse character was proved by linear fitting of the modified Curie–Weiss law. At room temperature, the specimens containing 0.0125 wt.% Nd2O3 with homogeneous microstructure presented excellent electrical properties: the piezoelectric constant d33 = 134 pC/N, the electromechanical coupling factor Kp = 0.27, and the dielectric constant ?r = 925 (1 kHz).  相似文献   

7.
Nano-size Ca1−χLa2χ/3Cu3Ti4O12 (χ = 0.00, 0.05, 0.10, 0.15 and 0.20) precursor powders were prepared via the sol–gel method and the citrate auto-ignition route and then processed into micro-crystal Ca1−χLa2χ/3Cu3Ti4O12 ceramics under heat treatment. Characterization of the as-obtained ceramics with XRD and SEM showed an average grain sizes of ∼1–2 μm, indicating La3+ amount to have little impact on grain size. The room-temperature dielectric constant of the Ca1−χLa2χ/3Cu3Ti4O12 ceramics sintered at 1000 °C was of the order of 103–104 despite the variation of χ values. Compared with CaCu3Ti4O12, La3+-doped CaCu3Ti4O12 showed a flatter dielectric constant curve related to frequency. It was found that the loss tangent of the Ca1−χLa2χ/3Cu3Ti4O12 ceramics was less than 0.20 in ∼600–105 Hz region, which rapidly decreased to a minimum value of 0.03 by La3+doping with χ = 0.05. Our measurement of the ceramics conductivities (σ) also indicated that the appropriate introduction of La3+ into CaCu3Ti4O12 would distinctly result in its dielectric properties.  相似文献   

8.
Pr2O3-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 (BCTZ-xPr) ceramics were prepared by the conventional solid-state method. A tetragonal phase is only observed in these ceramics, and the introduction of Pr2O3 decreases their sintering temperature without affecting negatively the piezoelectric constant. Enhanced ferroelectric properties were obtained in these BCTZ-xPr ceramics. The ceramic with x=0.06 wt% exhibits a good electrical behavior of d33∼460 pC/N, kp∼47.6%, εr∼4638, and tan δ∼0.015 when sintered at a low temperature of ∼1400 °C. As a result, the BCTZ-xPr ceramic is a promising candidate for lead-free piezoelectric ceramics.  相似文献   

9.
Pure BiFeO3 (BFO) and Bi1−xTbxFeO3 (BTFO) thin films were successfully prepared on FTO (fluorine doped tin oxide) substrates by the sol–gel spin-coating method. The effects of Tb-doping on the structural transition, leakage current, and dielectric and multiferroic properties of the BTFO thin films have been investigated systematically. XRD, Rietveld refinement and Raman spectroscopy results clearly reveal that a structural transition occurs from the rhombohedral (R3c:H) to the biphasic structure (R3c:H+R-3m:R) with Tb-doping. The leakage current density of BTFOx=0.10 thin film is two orders lower than that of the pure BFO, i.e. 5.1×10−7 A/cm2 at 100 kV/cm. Furthermore, the electrical conduction mechanism of the BTFO thin films is dominated by space-charge-limited conduction. The two-phase coexistence of BTFOx=0.10 gives rise to the superior ferroelectric (2Pr=135.1 μC/cm2) and the enhanced ferromagnetic properties (Ms=6.3 emu/cm3). The optimal performance of the BTFO thin films is mainly attributed to the biphasic structure and the distorted deformation of FeO6 octahedra.  相似文献   

10.
Bi2O3 was selected as liquid phase sintering aid to lower the sintering temperature of La(Mg0.5Ti0.5)O3 ceramics. The sintering temperature of La(Mg0.5Ti0.5)O3 ceramics is generally high, about 1600 °C. However, the sintering temperature was significantly lowered about 275 °C from 1600 °C to 1325 °C by incorporating in 15 mol% Bi2O3 and revealed the optimum microwave dielectric properties of dielectric constant (?r) value of 40.1, a quality factor (Q × f) value of 60,231 GHz, and the temperature coefficient (τf) value of 70.1 ppm/°C. During all addition ranges, the relative dielectric constants (?r) were different and ranged from 32.0 to 41.9, the quality factors (Q × f) were distributed in the range of 928–60,231 GHz, and the temperature coefficient (τf) varies from 0.3 ppm/°C to 70.3 ppm/°C. Noticeably, a nearly zero τf can be found for doping 5 mol% Bi2O3 sintering at 1325 °C. It implies that nearly zero τf can be achieved by appropriately adjusting the amount of Bi2O3 additions and sintering temperature for La(Mg0.5Ti0.5)O3 ceramics.  相似文献   

11.
0.975[(Na0.5K0.5)1−2xMgxNbO3]–0.025(Bi0.5Na0.5TiO3) (KNMN–BNT, x=0, 0.01, 0.02, 0.03, 0.04 and 0.05) lead-free piezoelectric ceramics were fabricated by the conventional solid-state sintering method. The dependence of Mg content on the microstructure and electrical properties of the ceramics is investigated. The X-ray diffraction (XRD) analysis revealed that an appropriate amount of Mg diffused into the KNN–BNT lattice to form a stable solid solution, the ceramics possessed a pure perovskite structure, and a morphotropic phase boundary (MPB) between the orthorhombic and tetragonal phases was observed with the composition of 0.02≤x≤0.05. The orthorhombic–tetragonal transition temperature (TO–T) is less than 95 °C and the Curie temperature (Tc) is almost unchanged (~360 °C) with the increase of MgO content. The ceramics with x=0.02 showed enhanced piezoelectric and ferroelectric properties because of close proximity to the MPB, i.e., d33~210 pC/N, kp~0.41, 2Ec~22.4 kV/cm and 2Pr~39.2 μC/cm2. Moreover, the dielectric properties exhibited optimal effects with x=0.02, that is εr~637 and tan δ~0.09. These results indicate that the introduction of MgO is an effective method to improve the density as well as the electrical properties and the temperature stability of the KNN–BNT ceramics. As a result, the KNMN–BNT ceramic is a promising candidate for lead-free piezoelectric materials.  相似文献   

12.
SnO2-doped CaSiO3 ceramics were successfully synthesized by a solid-state method. Effects of different SnO2 additions on the sintering behavior, microstructure and dielectric properties of Ca(Sn1−xSix)O3 (x=0.5–1.0) ceramics have been investigated. SnO2 improved the densification process and expanded the sintering temperature range effectively. Moreover, Sn4+ substituting for Si4+ sites leads to the emergence of Ca3SnSi2O9 phase, which has a positive effect on the dielectric properties of CaO–SiO2–SnO2 materials, especially the Qf value. The Ca(Sn0.1Si0.9)O3 ceramics sintered at 1375 °C possessed good microwave dielectric properties: εr =7.92, Qf =58,000 GHz and τf=−42 ppm/°C. The Ca(Sn0.4Si0.6)O3 ceramics sintered at 1450 °C also exhibited good microwave dielectric properties of εr=9.27, Qf=63,000 GHz, and τf=−52 ppm/°C. Thus, they are promising candidate materials for millimeter-wave devices.  相似文献   

13.
《Ceramics International》2017,43(12):8792-8799
Aurivillius compound Bi6Fe2-xCox/2Nix/2Ti3O18 (xBFCNT, 0≤x≤1) ceramics synthesized by a conventional solid state method, can exhibit simultaneously visible-light response, ferroelectric and ferromagnetic orders at room-temperature. The effects of structural phases and lattice distortions on electron transitions, polarizations and orbital orderings have been systematically investigated. Narrow band gaps of xBFCNT were confirmed and modified from 2.12 eV to 1.28 eV with increasing x by ultraviolet-visible-near infrared spectrophotometer. Co and Ni ions co-doping is found to induce ferromagnetic behavior but affects adversely the ferroelectric characteristics. In particular, the x=0.4 composition show obvious ferromagnetism with maximum remnant magnetization Mr (0.5 emu/g) and saturation magnetization Ms (2.4872 emu/g), due to spin canting of Fe/Ni/Co-based sub-lattices. These results reveal rich physical phenomena and open an avenue to design promising solar-energy conversion devices and multiferroic applications.  相似文献   

14.
Lead-free piezoelectric ceramics Ba0.90Ca0.10Ti1−xSnxO3 have been prepared by a conventional ceramic fabrication technique and the effects of Sn4+ on the structure, dielectric and piezoelectric properties of the ceramics have been investigated. All the ceramics exhibit a pure perovskite structure. After the substitution of Sn4+, the crystal structure of ceramics is transformed gradually from a tetragonal to an orthorhombic phase, and becomes a pseudo-cubic phase at x≥0.14. The substitution also decreases the Curie temperature greatly from 138 °C at x=0 to 33 °C at x=0.12, and shifts the orthorhombic–tetragonal phase transition to higher temperatures. Coexistence of the orthorhombic and tetragonal phases is formed in the ceramic at x=0.10, leading to significant improvements in the piezoelectric properties: d33=521 pC/N and kp=45.5%. Our results also reveal that the ceramics sintered at higher temperatures contain larger grains, and thus exhibit more noticeable tetragonal–orthorhombic phase transition and enhanced ferroelectric and piezoelectric properties.  相似文献   

15.
Ni/MgxTi1 − xO catalysts were prepared through a wet impregnation method by dispersing Ni on MgxTi1 − xO composite oxides obtained via a sol–gel technique. The Ni/MgxTi1 − xO catalysts were characterized by various means including ICP–OES, BET, XRD, H2–TPR, SEM, and TG. No free NiO peak was found in all XRD patterns of the Ni/MgxTi1 − xO catalysts. The H2–TPR and chemisorption results indicated that adding Ti to the NiO–MgO system obstructed the formation of solid solution, and thus increased the reducibility of the catalysts. The prepared MgxTi1 − xO composite oxides had the same ability to disperse Ni as TiO2 and MgO. The tri-reforming (simultaneous oxygen reforming, carbon dioxide reforming, and steam reforming) of methane over Ni/MgxTi1 − xO catalysts was carried out in a fixed bed flow reactor. The conversions of CH4 and CO2 can respectively be achieved as high as above 95% and 83% over Ni/Mg0.75Ti0.25O catalyst under the reaction conditions. The activity of Ni/Mg0.75Ti0.25O and Ni/Mg0.5Ti0.5O did not decrease for a reaction period of 50 h, indicating their rather high stability. The experimental results showed that the nature of support, the interaction between metal and support, and the ability to be reduced played an important role in improving the stability of catalysts.  相似文献   

16.
(BaxPb1−x)(Zn1/3Nb2/3)O3 (BPZN; x = 0.06–0.1) relaxor ferroelectric ceramics produced using a reaction-sintering process were investigated. Without any calcination involved, the mixture of raw materials was pressed and sintered directly. BPZN ceramics of 100% perovskite phase were obtained. Highly dense BPZN ceramics with a density higher than 98.5% of theoretical density could be obtained. Maximum dielectric constant Kmax 13,500 (at 75 °C), 19,600 (at 50 °C) and 14,800 (at 28 °C) at 1 kHz could be obtained in 6BPZN, 8BPZN and 10BPZN, respectively. Dielectric maximum temperature (Tmax) in BPZN ceramics via reaction-sintering process is lower than BPZN ceramics prepared via B-site precursor route.  相似文献   

17.
Ceramic samples based on ZnO-Nb2O5-TiO2 compositions have been prepared using solid state ceramic route. The work was carried out over a wide range of initial ZnNb2O6 and Zn0.17Nb0.33Ti0.5O2 compounds concentration. The crystal structure and microstructure developments were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was shown that the phase compositions of the samples present itself a columbite type and mixture of two phases—solid solutions of columbite and rutile types.The sintering behavior, permittivity, its temperature coefficients and quality factor had been characterized for ceramic samples in depending on compositions. The permittivity of the samples in this system is within the limits from 24 to 80, τ? from 150 to −560 ppm/°C. For the samples with τ? ∼ 0, ?r ∼ 43.8 and Q·f = 35000 GHz at f = 9 GHz. The comparatively low sintering temperature (≤1080 °C) and high dielectric properties in microwave range make these ceramics promising for application in electronics.  相似文献   

18.
The microwave dielectric properties of Sm(Mg0.5Ti0.5)O3 incorporated with various amount of Bi2O3 and B2O3 additives have been investigated systematically. In this study, both Bi2O3 and B2O3 additives acting as a sintering aid can effectively lower the sintering temperature from 1550 °C to 1300 °C. The ionic radius of Bi3+ for a coordination number of 6 is 0.103 nm, whereas the ionic radius of B3+ is 0.027 nm. Clearly, the ionic radius of Bi3+ is greatly larger than one of B3+, which resulted in the specimens incorporated with Bi2O3 having larger lattice parameters and cell volume than those incorporated with B2O3. The experimental results show that no second phase was observed throughout the entire experiments. Depending on the interfacial tension, the liquid phase may penetrate the grain boundaries completely, in which case the grains will be separated from one another by a thin layer as shown in Sm(Mg0.5Ti0.5)O3 ceramics incorporated with Bi2O3. Whereas, in Sm(Mg0.5Ti0.5)O3 ceramics incorporated with B2O3, the volume fraction of liquid is high, the grains may dissolve into the liquid phase, and rapidly rearrange, in which case contact points between agglomerates will be dissolved due to their higher solubility in the liquid, leading plate-like shape microstructure.A dielectric constant (?r) of 29.3, a high Q × f value of 26,335 GHz (at 8.84 GHz), and a τf of −32.5 ppm/°C can be obtained for Sm(Mg0.5Ti0.5)O3 ceramics incorporated with 10 mol% Bi2O3 sintered at 1300 °C. While Sm(Mg0.5Ti0.5)O3 ceramics incorporated with 5 mol% B2O3 can effectively lower temperature coefficient of resonant frequency, which value is −21.6 ppm/°C. The Sm(Mg0.5Ti0.5)O3 ceramic incorporated with heavily Bi2O3 and B2O3 additives exhibits a substantial reduction in temperature (∼250 °C) and compatible dielectric properties in comparison with that of an un-doped one. This implied that this ceramic is suitable for miniaturization in the application of dielectric resonators and filters by being appropriately incorporated with a sintering aid.  相似文献   

19.
Eu-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 (BNBT6-xEu, x=0.00–2.00 at%) lead-free piezoelectric ceramics have been synthesized by the solution combustion method. The effect of Eu doping concentration on the phase structure, microstructure and electrical properties of BNBT6 ceramics has been investigated. The XRD analysis confirms that the europium additive incorporates into the BNBT6 lattice and results in a phase transition from the coexistence of rhombohedral and tetragonal phases to a more symmetric pseudocubic phase. The SEM images indicate that the europium additive has little effect on the ceramic microstructure and the average grain size is about 2.0 μm. The electrical properties of BNBT6 ceramics can be improved by appropriate Eu doping. The 0.25 at% Eu doped BNBT6 ceramic presents excellent electrical properties: piezoelectric constant d33=149 pC/N, remnant polarization Pr=40.27 μC/cm2, coercive field Ec=2.95 kV/mm, dielectric constant εr=1658 and dissipation factor tan δ=0.0557 (10 kHz).  相似文献   

20.
The value of critical current density at 77 K in “zero” applied field (Jc) characterizing the superconducting state for YBa2Cu3O7−δ ceramics is closely related to the microstructure.The interrelationships between the microstructural factors such as pore volume fraction, oxygen content, average grain size, are complex. However, these factors also influence the normal state resistivity measured at room temperature (ρ300). We demonstrate how the current carrying cross section influences Jc and ρ300 in a similar way. Data, reported for two classes of YBa2Cu3O7−δ: small grain porous ceramics and larger-grain denser ceramics, reveal an approximate linear relation between ρ300 K and Jc. Extrapolation of this relation to a fully dense small grain YBa2Cu3O7−δ ceramic yields values of ρ300 = 0.4 mΩ cm and Jc = 103 A cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号