首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-density ZrC–SiC composite ceramics are typically sintered under demanding conditions, specifically, high sintering pressures and high temperatures. However, the need for such conditions can be alleviated by the use of ZrC–SiC composite nanoparticles with a high sintering activity. In the present study, core-shell-structured hybrid ZrC–SiC composite nanoparticles were synthesised with the addition of Mg by using a sol-gel process combined with in-situ carbothermal reduction reactions. The synthesis route, characterisation, and sintering mechanism were investigated in detail. It was found that the addition of MgCl2 to the precursors of ZrC–SiC can not only strengthen the network structure of ZrC–SiC gel but also lead to the formation of an amorphous Mg–Si–O oxide coating on the nanoparticle surfaces, which enhances the sinterability of ZrC–SiC nanoparticles. As a result, a compact ZrC–SiC composite ceramic with a higher relative density (up to 91.3%) than the contrast sample was successfully prepared by pressure-free sintering at 1700 °C.  相似文献   

2.
A novel organometallic zirconium polymer was synthesized through the copolycondensation using n-butyllithium, 1,4-diethynylbenzene, phenylacetylene and zirconium tetrachloride as raw materials. Then biomorphic C–ZrC–SiC composites were fabricated from corn stover templates by precursor infiltration and pyrolysis process using hybrid polymeric precursors containing the organometallic zirconium polymer and polycarbosilane. The microstructure, mechanical properties and oxidation resistance of the composites were investigated. With ZrC content increasing, the mechanical properties of the composites were enhanced due to dispersion strengthening and grain fining of the homogeneously dispersed ZrC nanoparticles. The oxidation behavior of C–SiC–ZrC indicated that the oxidation resistance of the composite was reduced at 1000 °C but improved at 1500 °C with the increase of ZrC content. The improved oxidation resistance was mainly attributed to a proper ZrC content, the formation of ZrSiO4 layer on the surface of the composite, and its matrix microstructure characterized by a nano-sized dispersion of ZrC–SiC phases.  相似文献   

3.
Spark plasma sintering (SPS) of ZrC–SiC composite powders in the presence of LiYO2 sintering additive was studied. The starting powders were obtained by a carbothermal reduction (CTR) of natural mineral zircon (ZrSiO4), which provided an intimate mixing of in-situ created ZrC and SiC powders. This composite powder and LiYO2 as additive were densified by spark plasma sintering. Microstructural features of the composite were investigated by XRD, SEM/EDS and AFM analysis. The sintered composite material possesses promising mechanical properties and excellent cavitation resistance which was observed with a cavitation erosion test. The values of Vickers microhardness and fracture toughness of the composite material are 20.7 GPa and 5.07 MPam1/2, respectively.  相似文献   

4.
ZrC–SiC powders are synthesized by high‐temperature pyrolysis of hybrid liquid precursors, which are prepared from organic Zr‐containing precursor (PZC) and liquid polycarbosilane (LPCS). Due to the excellent miscibility between PZC and LPCS, the hybrid liquid precursors are formed by dissolving PZC into LPCS without adding organic solvent. The viscosity and elemental content of Zr and Si of the hybrid precursors are readily adjustable by controlling the LPCS/PZC mass ratio. SEM and TEM observations reveal that the ZrC–SiC powders pyrolyzed at 1550°C exhibit spherical morphology with characteristic dimension of less than 60 nm, and the two phases are uniformly distributed in composite powders. The advantage of the ZrC–SiC powders synthesized by this novel method is demonstrated by investigating the oxidation behavior of powders with different amount of SiC and ZrC. Below 700°C, ZrC quickly oxidizes to generate an almost nonprotective ZrO2 scale, whereas at ~ 1000°C, dense and protective SiO2 forms that improves the oxidation resistance of the ZrC–SiC composite powders.  相似文献   

5.
《应用陶瓷进展》2013,112(5):307-310
Abstract

Carbon fibre reinforced C and SiC binary ceramic matrix composites (C/C–SiC) were fabricated by a quick and low cost reactive melt infiltration (RMI) method with Si–Zr25 and Si melts. Effects of zirconium addition in infiltrated Si melt on microstructure and ablation resistance of the composite were investigated. The composite by Si–Zr25 melt infiltration was composed of SiC, ZrC, C and a little amount of ZrSi2 without residual silicon, overcoming the problem of residual silicon in C/C–SiC composite by Si RMI. Compared with the composite by Si melt infiltration, the ablation resistance of the composite by Si–Zr25 was greatly improved by zirconium addition due to ZrO2 and SiO2 protecting layer formed during ablation.  相似文献   

6.
Inspired by grouting technique in architectural engineering, an innovative method of slurry injection and vacuum impregnation was put forward to introduce nanosized ZrC–SiC ceramics into PyC modified 3-D needle-punched carbon fiber preform homogeneously and continuously, followed by spark plasma sintering to prepare Cf/ZrC–SiC with graceful mechanical responses. The composite possessed improved fracture toughness and work of fracture at 5.37 ± 0.25 MPa∙m1/2 and 951 ± 12 J/m2, 50% and nearly one order of magnitude higher than those of ZrC–SiC composite, respectively, with rivaling flexural strength at 177 ± 8 MPa synchronously. A graceful fracture mode was embodied in an obviously extended yield plateau with increased failure displacement by 300%. This enhancement was attributed to the uniform and continuous combination of ZrC–SiC with carbon fiber preform as well as protection and interface tailoring from PyC coating. The study offered an easy and effective method of preparing 3-D fiber reinforced ceramic matrix composites.  相似文献   

7.
The present study investigates the effect of Ti addition on the microstructure development and phase evolution during spark plasma sintering of ZrB2–SiC ceramic composite. A ZrB2–20?vol% SiC sample with 15?wt% Ti was prepared by high-energy milling and spark plasma sintering at 2000?°C for 7?min under 50?MPa. The X-ray diffraction test, microstructural studies and thermodynamic assessments indicated the in-situ formation of several compounds due to the chemical reactions of Ti with ZrB2 and SiC. The Ti additive was completely consumed during the sintering process and converted to the ceramic compounds of TiC, TiB and TiSi2. In addition, another refractory phase of ZrC was also formed as a result of sidelong reaction of ZrB2 and SiC with the Ti additive.  相似文献   

8.
《Ceramics International》2015,41(6):7853-7859
Biomorphic cellular C/SiC–ZrC composite ceramics were fabricated from pine and oak wood precursors. Carbonaceous preforms were first prepared by wood pyrolysis and subsequently infiltrated with polyzirconobutanediol (PZC) and polycarbosilane (PCS) to form the composite ceramics. TGA/DTG and dilatometric analysis were used to study the pyrolysis of the wood precursor. XRD and SEM analyses were applied to characterize the microscopic properties of the resulting biomorphic cellular C/SiC–ZrC composite ceramics. Compared with oak, pine was preferable for preparation of cellular C/SiC–ZrC composite ceramics because of its unique microstructure. The SiC–ZrC phase distribution differed within the composite ceramics. In addition, the compression strengths of wood, charcoal, and cellular C/SiC–ZrC composite ceramics were measured in the axis direction. Results showed the improved compression strength of biomorphic cellular C/SiC–ZrC composite ceramics when the impregnation cycles were repeated.  相似文献   

9.
In this study, nanoscale composite SiC-ZrC ceramic fibres, derived from polyzirconocenecarbosilane (PZCS) via melt spinning, electron beam crosslinking, pyrolysis and sintering were investigated in detail. Compared with several commercial products of second-generation SiC fibres, the produced composite fibres exhibit improved thermal stability, mechanical properties and oxidation resistance. SiC grains in the fibre grew from 9.8 nm to 33.9 nm after annealing in an inert atmosphere at 1800 °C for 1 h, as well as decomposition of the SiCxOy phase and the growth of SiC grains affected the mechanical properties of the fibres, and the mechanical properties of the fibres were maintained at 1.1 GPa, accompanied by an increase in the modulus. After the fibres were oxidized at 1100~1400 °C for 1 h, a dense oxide layer of SiO2-ZrO2 was formed on the surface of the fibres, which slowed down the rate of further fibre oxidation, thus, the fibres exhibited excellent oxidation resistance.  相似文献   

10.
《Ceramics International》2020,46(11):18895-18902
In order to improve the ablation and oxidation resistance of C/C–ZrC–SiC composites in wide temperature domain, “Z-pins like” Zr–Si–B–C multiphase ceramic rods are prepared in the matrix. The influence of different sintering temperatures on the microstructure of ceramic rods and the ablative behavior of heterogeneous composites are studied. The results showed that the ZrB2 and SiC phases are formed in the sintered matrix, and the increase of sintering temperature is beneficial to improve the density of the ceramic rods. The ablation properties of samples have been greatly improved. The mass and linear ablation rate are 0.8 mg/s and 3.85 μm/s, respectively, at an ablation temperature of 3000 °C and an ablation time of 60 s. After ablation, the matrix surface is covered with SiO2 and ZrO2 mixed oxide films. This is due to the preferential oxidation of “Z-pins like” Zr–Si–B–C multiphase ceramic rods in the ablation process, and B2O3 melt, SiO2 melt, borosilicate glass, ZrSiO4 melt and ZrO2 oxide film can be generated successively from the low-temperature segment to the ultra-high temperature segment. These oxidation products can be used as compensation oxide melts for the healing of cracks and holes on the matrix surface in different temperature ranges and effectively prevent the external heat from spreading into the matrix. Therefore, C/C–ZrC–SiC composites with “Z-pins like” Zr–Si–B–C multiphase ceramic rods achieve ablation resistance in wide temperature domain.  相似文献   

11.
《Ceramics International》2021,47(23):32505-32513
A ZrC–SiC/TiC–SiC/SiC sandwich-structured coating is prepared on a C/C composite by pack cementation methods. The microstructures of this coating are characterized by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and the oxidation resistance is investigated by performing an oxidation test at 1773 K and a cyclic oxidation test. The results show that the mass losses are 7.4% and 3.8% after oxidation for 144 h and 40 cycles, respectively. The sandwich structure relaxes, releases the thermal stress caused by the mismatch in the coefficients of thermal expansion, and absorbs energy to prevent the initiation and propagation of cracks. The ZrC–SiC/TiC–SiC/SiC coating exhibits good isothermal oxidation resistance and excellent cyclic oxidation protection properties.  相似文献   

12.
Al2O3-SiC composite ceramics were prepared by pressureless sintering with and without the addition of MgO, TiO2 and Y2O3 as sintering aids. The effects of these compositional variables on final density and hardness were investigated. In the present article at first α-Al2O3 and β-SiC nano powders have been synthesized by sol-gel method separately by using AlCl3, TEOS and saccharose as precursors. Pressureless sintering was carried out in nitrogen atmosphere at 1600 °C and 1630 °C. The addition of 5 vol.% SiC to Al2O3 hindered densification. In contrast, the addition of nano MgO and nano TiO2 to Al2O3-5 vol.% SiC composites improved densification but Y2O3 did not have positive effect on sintering. Maximum density (97%) was achieved at 1630 °C. Vickers hardness was 17.7 GPa after sintering at 1630 °C. SEM revealed that the SiC particles were well distributed throughout the composite microstructures. The precursors and the resultant powders were characterized by XRD, STA and SEM.  相似文献   

13.
《应用陶瓷进展》2013,112(6):366-373
Abstract

Two dimensional C/C–ZrB2–ZrC–SiC composites were fabricated through precursor infiltration and pyrolysis process using a mixture of polycarbosilane and ZrB2 precursor and ZrC precursor as the impregnant. The microstructures, mechanical properties and ablation properties of the composites were investigated. The results showed that the homogeneity of the composite improved on using novel precursors that can dissolve with polycarbosilane through the formation of nanocomposite matrix. The flexural strength and fracture toughness first increased and then decreased on increasing the pyrocarbon content in the composite. Compared with the C/C–SiC composite, the ablation resistance of C/C–ZrB2–ZrC–SiC composite was greatly enhanced. The mass loss rate and linear recession rate exposed to the plasma torch were 1?7 mg/s and 1?8 μm/s, respectively. The formation of a ZrO2–SiO2 glassy layer on the surface significantly contributed to the excellent ablative property of the composite.  相似文献   

14.
《应用陶瓷进展》2013,112(5):272-275
Silicon carbide (SiC) monoliths were synthesised using nano-size SiC powder mixed with/without polysilazane by hot pressing at 1750°C for 1?h under an applied pressure of 20?MPa in N2 or Ar atmosphere. The effects of polysilazane and sintering atmosphere on the microstructure and hardness of SiC were examined. The grain sizes of the SiC ceramics sintered in N2 atmosphere with and without the polysilazane were 161 and 605?nm, while the density for those samples were 96.5 and 98.1%, respectively. It was shown that Si2N2O was formed for the SiC/polysilazane composite and sintered in N2. In addition, the sample mixed with polysilazane followed by sintering in N2 atmosphere revealed a quite high hardness in spite of its relatively low density. It was suggested that Si2N2O phase played an important role for the inhibition of grain and subsequent high hardness.  相似文献   

15.
A high performance and low cost C/C–SiC composite was prepared by Si–10Zr alloyed melt infiltration. Carbon fiber felt was firstly densified by pyrolytic carbon using chemical vapor infiltration to obtain a porous C/C preform. The eutectic Si–Zr alloyed melt (Zr: 10 at.%, Si: 90 at.%) was then infiltrated into the porous preform at 1450 °C to prepare the C/C–SiC composite. Due to the in situ reaction between the pyrolytic carbon and the Si–Zr alloy, SiC, ZrSi2 and ZrC phases were formed, the formation and distribution of which were investigated by thermodynamics. The as-received C/C–SiC composite, with the flexural strength of 353.6 MPa, displayed a pseudo-ductile fracture behavior. Compared with the C/C preform and C/C composite of high density, the C/C–SiC composite presented improved oxidation resistance, which lost 36.5% of its weight whereas the C/C preform lost all its weight and the high density C/C composite lost 84% of its weight after 20 min oxidation in air at 1400 °C. ZrO2, ZrSiO4 and SiO2 were formed on the surface of the C/C–SiC composite, which effectively protected the composite from oxidation.  相似文献   

16.
《Ceramics International》2021,47(22):31251-31258
A modification of the precursor infiltration pyrolysis (PIP) method was explored to prepare the integrated doped ceramic matrix and coating by the added SiC nanowires layer and shape-stabilization process. The epitaxial layer of SiC nanowires provided surficial attachments for the precursor. And the shape-stabilization process aggregated loose ceramic particles into a coating. Then the SiC nanowire-reinforced ZrC–SiC coating-matrix integrated C/C (S/SZ-CZ/C) composite was simply prepared by the modified PIP method. The bonding strength between the coating and matrix of the S/SZ-CZ/C composite was improved. Through the ablation test, the mass and linear ablation rate of the S/SZ-CZ/C composite were 0.46 mg/s and 0.67 μm/s, which were 60.34 % and 74.91 % lower than those of the SiC nanowire-reinforced C/C–ZrC (S/CZ/C) composite, respectively. The integration of the coating and matrix enabled the formation of a continuous oxide layer of molten SiO2 and ZrO2 in the ablation process, which helped to block the oxygen and heat during the ablation test. Thus the ablation resistance of the materials was systematically and effectively improved.  相似文献   

17.
《Ceramics International》2022,48(16):23081-23087
Aluminum silicate fiber fabric (ASFF) has been widely used in the outer surface of flexible insulation felt on the leeward side of aerospace vehicle. In order to improve the temperature resistance of ASFF, a kind of SiC–ZrC composite coating was prepared on the surface of fiber fabric via spraying method with SiC as emittance agent and ZrC as additive. The surface morphology and mechanical properties of the coating were studied. Compared with the single-component SiC coating, the composite coating could effectively avoid coating spalling and improve the surface integrity at high temperature. After thermal treatment at 1100 °C for 2 h, the interface bond strength of the composite coating/substrate was 52.41% higher than that of SiC coating/substrate. The tensile strength of fiber fabric with SiC–ZrC composite coating could reach 91.75 MPa, which was 101.76% higher than that of raw ASFF. Therefore, the SiC–ZrC coating could greatly improve the temperature resistance of ASFF, and has an attractive application prospect in the field of thermal protection system.  相似文献   

18.
The thermal conductivity, thermal expansion, Youngs Modulus, flexural strength, and brittle–plastic deformation transition temperature were determined for HfB2, HfC0·98, HfC0·67, and HfN0·92 ceramics. The oxidation resistance of ceramics in the ZrB2–ZrC–SiC system was characterized as a function of composition and processing technique. The thermal conductivity of HfB2 exceeded that of the other materials by a factor of 5 at room temperature and by a factor of 2·5 at 820°C. The transition temperature of HfC exhibited a strong stoichiometry dependence, decreasing from 2200°C for HfC0·98 to 1100°C for HfC0·67 ceramics. The transition temperature of HfB2 was 1100°C. The ZrB2/ZrC/SiC ceramics were prepared from mixtures of Zr (or ZrC), SiB4, and C using displacement reactions. The ceramics with ZrB2 as a predominant phase had high oxidation resistance up to 1500°C compared to pure ZrB2 and ZrC ceramics. The ceramics with ZrB2/SiC molar ratio of 2 (25 vol% SiC), containing little or no ZrC, were the most oxidation resistant.  相似文献   

19.
2D C/ZrC–SiC composites were fabricated by chemical vapor infiltration combined with polymer slurry infiltration and pyrolysis. Liquid highly branched polycarbosilane was used as the pre-ceramic precursor. In order to improve the oxidation resistance, three kinds of coating structures were prepared on C/ZrC–SiC composites: pure zirconium carbide coating, SiC–ZrC coating, and ZrB2–SiC coating. Structural evolutions of the as-produced composites after oxidation in CH4 combustion gas atmosphere at about 1800 °C were investigated and compared. Based on a model of the oxidation process, the mixture ZrB2–CVD SiC showed the best oxidation resistance.  相似文献   

20.
ABSTRACT

ZrB2–ZrC–SiC is one of the ultra-high-temperature ceramic composites with excellent properties. In this research, high-purity ZrB2–ZrC–SiC nanopowders were synthesised using a carbothermal reduction reaction at a relatively low temperature (1370°C) from cost-effective zirconium(IV) chloride by a sol–gel method. The effect of heat treatment temperature on the synthesis of ZrB2–ZrC–SiC composite powder was studied. X-ray diffractometry results showed that the phases ZrB2, β-SiC and ZrC were synthesised at 1370°C. The mean crystallite sizes for each of the phases were calculated using the Scherrer method. The specific surface area for the sample calcined at 1370°C was 81.479?m2?g?1. SEM observation revealed that the particles had a size lower than 250?nm. Backscattered electron image and map analysis with scanning electron microscopy showed that a suitable phase homogeneity was achieved, as confirmed by energy-dispersive X-ray spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号