首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
xGnP‐Reinforced LLDPE nanocomposites have been prepared using co‐, counter‐ and modified corotating screw systems. The highest tensile strength and modulus were shown in the case of composites made by counter‐rotating screws. The percolation threshold of exfoliated graphite nanoplatelet/LLDPE nanocomposites was between 12 and 15 wt.‐%. The change of crystallinity caused by exfoliated graphite nanoplatelet loading was monitored using DSC and XRD. It was found that solution mixing showed better dispersion of exfoliated graphite nanoplatelets than melt mixing, and counter‐rotating screws produced better dispersion of the exfoliated graphite nanoplatelets than co‐ and modified corotating screws even though bubbling appeared during mixing in the barrel.

  相似文献   


2.
Exfoliated graphite nanoplatelet (xGnP?) and carbon nanotube (CNT)-reinforced ethylene vinyl acetate (EVA) nanocomposites have been fabricated by three screw rotating systems: co-, counter- and modified-co-rotating. The highest tensile strength and modulus were shown by the composites, both xGnP- and CNT-loaded, made by counter-rotating. The counter-rotating process produced better dispersion than the other two as found in morphology studies by environmental scanning electron microscopy (ESEM). However, the rotating system did not affect the electrical conductivity. The percolation threshold of the xGnP–EVA nanocomposites formed by solution mixing and injection molding was between 14–16 wt%, due to the advantageous effect of sheets with higher aspect ratios compared with spherical or elliptical fillers in forming conducting networks in the polymer matrix. Although CNT–EVA was electrically conductive with only 5 wt% CNT loading, we recommend xGnP as a more suitable additive material for polymer composites. xGnP greatly increased the thermal stability of xGnP–EVA composites to be applied as adhesives, films and cables.  相似文献   

3.
Nanocomposites of LDPE/LLDPE/nanoclay have been prepared using a lab‐scale co‐rotating twin screw extruder. Using XRD, tensile testing, AFM, TGA, effects of some material properties and one processing parameter on mechanical and thermal properties of the prepared nanocomposites were evaluated. Tensile properties indicated that all the prepared nanocomposites exhibited a significant improvement in elastic modulus and toughness compared to pristine LDPE/LLDPE blends of the same composition. Thermal stability of nanocomposites in the air and nitrogen atmosphere was improved. XRD patterns and AFM micrographs showed semi‐exfoliated and intercalated microstructures for the prepared nanocomposites with different orders of mixing.  相似文献   

4.
Octa(aminophenyl) polyhedral oligomeric silsesquioxane (OAP‐POSS) and boron‐containing phenol‐formaldehyde resin (BPFR) were synthesized, respectively. The BPFR nanocomposites with different OAP‐POSS content (wt%) were prepared, and their properties were characterized. The results show that the thermal degradation process of this nanocomposites can be divided into three stages, and they are all following the first order mechanism. The residual ratio and thermal degradation activation energy Ea of 9 wt% OAP‐POSS/BPFR nanocomposites are both better than others and the Ea increase gradually in three stages, which is 93.3, 134.0, and 181.9 kJ mol−1, respectively. Its residual ratio at 900°C is 36.48%. The mechanical loss peak temperature Tp is 228°C for 12 wt% OAP‐POSSS/BPFR nanocomposites, which is higher 48°C than pure BPFR. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

5.
Towards the development of copolymeric nanocomposites, N‐3(trifluoromethyl)phenyl‐7‐oxanorbornene‐5,6‐dicarboximide (TFI) monomer and a macromonomer of polyhedral oligomeric silsesquioxane (POSS) were synthesized. Ring‐opening metathesis polymerization to copolymerization of specified proportions of the two co‐monomers was carried out. All the monomers and polymers were characterized using Fourier transform IR analysis and 1H and 29Si NMR. Gel permeation chromatography shows that copolymeric nanocomposites have a lower average molar mass than a homopolymer of TFI (HTFI). TGA shows that the thermal stability of the copolymer is inversely proportional to the proportion of POSS units. DSC studies have demonstrated that the glass transition temperature (Tg) of a nanocomposite possessing 25 wt% POSS is at a higher temperature (180 °C) than that of HTFI (175 °C). Transmission electron microscopy and AFM images of copolymers are consistent with the self‐assembled spherical aggregation of POSS units, while X‐ray diffraction studies have confirmed the homogeneous dispersion of the same units within the nanocomposites. © 2012 Society of Chemical Industry  相似文献   

6.
Poly(lactic acid)/organo‐montmorillonite (PLA/OMMT) nanocomposites toughened with maleated styrene‐ethylene/butylene‐styrene (SEBS‐g‐MAH) were prepared by melt‐compounding using co‐rotating twin‐screw extruder followed by injection molding. The dispersibility and intercalation/exfoliation of OMMT in PLA was characterized using X‐ray diffraction and transmission electron microscopy (TEM). The mechanical properties of the PLA nanocomposites was investigated by tensile and Izod impact tests. Thermogravimetric analyzer and differential scanning calorimeter were used to study the thermal behaviors of the nanocomposite. The homogenous dispersion of the OMMT silicate layers and SEBS‐g‐MAH encapsulated OMMT layered silicate can be observed from TEM. Impact strength and elongation at break of the PLA nanocomposites was enhanced significantly by the addition of SEBS‐g‐MAH. Thermal stability of the PLA/OMMT nanocomposites was improved in the presence of SEBS‐g‐MAH. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Positive temperature coefficient to resistivity characteristics of high density polyethylene (HDPE)/silver (Ag)‐coated glass bead (45 wt%) composites, without and with nanoclay, has been investigated with reference to HDPE/carbon black (CB) (10 wt%) composites. Plot of resistivity versus temperature of HDPE/CB (10 wt%) composites showed a sudden rise in resistivity (PTC trip) at ≈128°C, close to the melting temperature (Tm) of HDPE. However, for HDPE/Ag coated glass bead (45 wt%) composites, the PTC trip temperature (≈88°C) appeared well below the Tm of HDPE. Addition of 1 phr clay in the composites resulted in an increase in PTC trip temperature of HDPE/Ag‐coated glass bead (45 wt%) composites, whereas no significant effect of clay on PTC trip temperature was evident in HDPE/CB/clay composites. We proposed that the PTC trip temperature in HDPE/Ag‐coated glass bead composites was governed by the difference in coefficient of thermal expansion of HDPE and Ag‐coated glass beads. The room temperature resistivity and PTC trip temperature of HDPE/Ag‐coated glass bead (45 wt%) composites were found to be very stable on thermal cycling. Dynamic mechanical analyzer results showed higher storage modulus of HDPE/Ag‐coated glass bead (45 wt%) composites compared with the HDPE/CB (10 wt%) composites. Thermal stability of HDPE/Ag‐coated glass bead (45 wt%) composites was also improved compared with that of HDPE/CB (10 wt%) composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
Poly(ethylene terephthalate)/poly(lactic acid) (PET/PLA) blends with composition of 90/10 and 75/25 (wt %/wt %) along with two types of graphenic materials, namely graphene oxide (GO) and exfoliated graphite (xGnP), were prepared through one-step melt mixing process. The Thermal, thermo-oxidative, and hydrolytic degradation characteristics of the developed degradable PET-based nanocomposites were investigated. Thermal degradation studies by thermogravimetry analysis and melt rheological analysis in N2 atmosphere, revealed that unlike xGnP, the addition of GO to the blends reduced their thermal stability leading to reduction of viscosity and elasticity of the blends. The behavior was attributed to the role of GO in enhancing the chain scission reactions. In the air atmosphere, the barrier properties of the graphenic materials prevailed. Compared to xGnP, the relatively well-dispersed GO showed better barrier against oxygen and increased the thermo-oxidative stability of the blends. Investigation of the hydrocatalytic degradation of developed systems, at different pH of 2 and 4, over a period of 40 days at 37 °C, showed that the amount of weight loss of the GO-containing nanocomposite systems was higher than that of xGnP. The overall results of thermal, thermo-oxidative, and hydrocatalytic degradation studies confirmed the prominent role of GO in the development of degradable PET-based products. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48466.  相似文献   

9.
Summary: Linear low density polyethylene/maleic anhydride grafted polyethylene/montmorillonite clay (LLDPE/PEMA/clay) nanocomposites prepared using a co‐rotating twin screw extruder exhibit unique thermal, rheological, and mechanical behaviors. All the mechanical properties including ductility increase with clay loading. X‐ray diffraction analysis and TEM images reveal an intercalated clay structure for the LLDPE/PEMA/clay composite with 5% clay and an exfoliated structure for that with 2% clay. Differential scanning calorimetry shows that the addition of PEMA does not influence the melting temperature but favors the formation of more thin lamellas. Rheological characterization indicates that the LLDPE‐PEMA blend has similar rheological behavior to neat LLDPE, implying the two polymers are completely miscible. The composites exhibit significantly higher storage and loss modulus and complex viscosity at low frequencies, and the magnitude of all these properties increases with clay loading. Furthermore, the slopes of G′, G″, and complex viscosity versus frequency are similar for the composites of different phase morphologies, suggesting that the rheological behaviors of the composites depends more on clay loading than phase morphology. The enhanced miscibility between LLDPE and PEMA, and more importantly, interfacial interaction between clay, PEMA, and LLDPE, are responsible for the distinct improvement in all the mechanical properties of the composite, and in particular for the marked improvement in ductility.

Stress‐strain diagram for LLDPE, LLDPE/PEMA, and LLDPE/PEME‐clay nanocomposites.  相似文献   


10.
Flame-retardant Elvacite acrylic resin/Cloisite 6A nanocomposites were prepared via direct melt intercalation. Transmission electron microscopy micrographs showed that 75% of the clay platelets were completely exfoliated. This high degree of exfoliation resulted in a large improvement in thermal stability and UV absorption properties without sacrificing optical clarity. Cone calorimetry tests clearly showed that the heat release rate was far lower and more gradual in the nanocomposites than in pure resins. Thermal gravimetric analysis measurements showed that the thermal stability of nanocomposites was enhanced by almost 50°C (at 50 wt% loss) when the samples were thermally degraded under nitrogen. These results are consistent with a dramatic increase in the specific heat of the nanocomposites as verified by high precision differential scanning calorimetry measurements. Additionally, Fourier transform infrared spectroscopy results indicated that the introduction of clay did not change the chemical structure of acrylic resins.  相似文献   

11.
The electrical properties and electromagnetic shielding effectiveness (EM SE) of nanocomposites consisting of heat‐treated carbon nanofibers (Pyrograf® III PR‐19, CNF) in a linear low density polyethylene (LLDPE) matrix were assessed. Heat treatment (HT) of carbon nanofibers at 2500°C significantly improved their graphitic crystallinity and intrinsic transport properties, thereby increasing the EM SE of the nanocomposites. Nanocomposites containing 11 vol% (20 wt%) PR‐19 HT displayed a DC electrical conductivity of about 1.0 ± 0.1 × 101 S/m (n = 4), about 10 orders of magnitude better than that of as‐received PR‐19 CNF nanocomposites. Over a frequency range of 30 MHz to 1.5 GHz, nanocomposites (2.5 mm thick) containing PR‐19 HT displayed EM SE average values of about 14 ± 2 dB (n = 4). Absorption was determined to be the main EM SE mechanism for the heat‐treated CNF nanocomposites. The nanocomposites possessed a modulus of 632 ± 36 MPa (n = 6) (nominally twice that of pure LLDPE) and a strain‐to‐failure of 180 ± 98% (n = 6), indicating that a significant ductility is retained in the nanocomposites. Such nanocomposites display potential as absorptive electromagnetic interference shielding materials for thin films and micromolding. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

12.
In this study, the effect of maleic anhydride grafted styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MA) content on mechanical, thermal, and morphological properties of polyethylene terephthalate/polycarbonate/halloysite nanotubes (PET/PC/HNTs) nanocomposites has been investigated. Nanocomposites of PET/PC (70 : 30) with 2 phr of HNTs were compounded using the counter rotating twin screw extruder. A series of formulations were prepared by adding 5–20 phr SEBS‐g‐MA to the composites. Incorporation of 5 phr SEBS‐g‐MA into the nanocomposites resulted in the highest tensile and flexural strength. Maximum improvement in the impact strength which is 245% was achieved at 10 phr SEBS‐g‐MA content. The elongation at break increased proportionately with the SEBS‐g‐MA content. However, the tensile and flexural moduli decreased with increasing SEBS‐g‐MA content. Scanning electron microscopy revealed a transition from a brittle fracture to ductile fracture morphology with increasing amount of SEBS‐g‐MA. Transmission electron microscopy showed that the addition of SEBS‐g‐MA into the nanocomposites promoted a better dispersion of HNTs in the matrix. A single glass transition temperature was observed from the differential scanning calorimetry test for compatibilized nanocomposites. Thermogravimetric analysis of PET/PC/HNTs nanocomposites showed high thermal stability at 15 phr SEBS‐g‐MA content. However, on further addition of SEBS‐g‐MA up to 20 phr, thermal stability of the nanocomposites decreased due to the excess amount of SEBS‐g‐MA. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42608.  相似文献   

13.
《Polymer Composites》2017,38(12):2806-2813
In this article, in order to enhance the thermal conductivity of the polyethylene (PE)/boron nitride (BN) composites through controlling the crystallization behavior of the PE matrix, the crystallization and melting behavior of the PE in the PE/BN composites was investigated. When the BN content was more than 10 wt%, an extra weak exothermic peak (T h) at 130°C was observed. Moreover, after the annealing of the PE/BN composites at 130°C, the extra weak melting peaks (T mh) of the PE in the PE/BN composites were also observed and shifted to the high temperature with increasing annealing time, which proved that the T h was induced by PE crystallization. Meanwhile, the results of temperature‐dependent absorbance IR spectra of the PE/BN composites showed that the crystallization peak (729 cm−1) remarkably appeared at 130.2°C, indicating that the crystallization of the PE in the PE/BN composites can occur at 130.2°C. When the annealing time and temperature were 20 min and 130°C, the thermal conductivity of the PE/BN composite was 16% higher than that of the unannealed PE/BN composites. In addition, the results of the wide angle X‐ray diffraction (WAXD) showed that the BN particles had no influence on the PE crystalline form in the PE/BN composites. POLYM. COMPOS., 38:2806–2813, 2017. © 2015 Society of Plastics Engineers  相似文献   

14.
To improve the thermal properties of linear low‐density polyethylene (LLDPE), the CaCO3/LLDPE nanocomposites were prepared from nanometer calcium carbonate (nano‐CaCO3) and LLDPE by melt‐blending method. A series of testing methods such as thermogravimetry analysis (TGA), differential thermogravimetry analysis, Kim‐Park method, and Flynn‐Wall‐Ozawa method were used to characterize the thermal property of CaCO3/LLDPE nanocomposites. The results showed that the CaCO3/LLDPE nanocomposites have only one‐stage thermal degradation process. The initial thermal degradation temperature T0 increasing with nano‐CaDO3 content, and stability of LLDPE change better. The thermal degradation activation energy (Ea) is different for different nano‐CaCO3 content. When the mass fraction of nano‐CaCO3 in nanocomposites is up to 10 wt %, the nanocomposite has the highest thermal degradation Ea, which is higher (28 kJ/mol) than pure LLDPE. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
A series of co‐polyimide/attapulgite (co‐PI/AT) nanocomposites have been successfully fabricated from anhydride‐terminated polyimide (PI) and γ‐aminopropyltriethoxysilane (APTES)‐modified fibrous attapulgite (AT). Co‐PI was prepared from 4,4′‐diaminodiphenyl ether (ODA), 4,4′‐oxydiphthalic anhydride (ODPA), and 2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]propane dianhydride (BPADA) by using the method of chemical imidization. Different amount of AT (0, 1, 3, 5, 7 wt%) were introduced into co‐PI via strong covalent interactions between terminal anhydride and amino groups. The properties of co‐PI/AT nanocomposites such as morphology, thermal stability, mechanical properties, and UV transparency were investigated to illustrate the contribution of the introduction of AT into the PI matrix. FTIR spectra and SEM images revealed that network structures between co‐PI and AT are formed, which endowed the nanocomposites with outstanding thermal and mechanical properties. The co‐PI/AT nanocomposites exhibited excellent thermal and thermo‐oxidative stabilities with the onset decomposition temperature and 10% weight loss temperature increasing to the ranges of 502–510°C and 555–562°C from 480°C to 526°C for the pristine co‐PI, respectively. The glass transition temperatures of these co‐PI/AT nanocomposites increased to the range of 231–238°C from 222°C for pure co‐PI. The co‐PI/AT nanocomposites films were found to be transparent, flexible, and tough. By incorporating 5 wt% AT into the co‐PI matrix, the tensile strength, elongation at break, and Young's modulus of the co‐PI/AT nanocomposites reached 110.7 MPa, 14.5%, and 1.2 GPa, respectively, which are 50%, 120%, and 80% increased compared with the values of pristine PI. POLYM. COMPOS., 35:86–96, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
Positive temperature coefficient to resistivity (PTCR) characteristics of polystyrene (PS)/Ni‐powder (40 wt%) composites in the presence of multiwall carbon nanotubes (MWCNTs) has been investigated with reference to PS/carbon black (CB) composites. The PS/CB (10 wt%) composites showed a sudden rise in resistivity (PTC trip) at ≈110°C, above the glass transition temperature (Tg) of PS (Tg ≈95°C). Interestingly, the PTC trip temperature of PS/Ni‐powder (40 wt%)/MWCNT (0.75 phr) composites appeared at ≈90°C (below Tg of PS), indicating better dimensional stability of the composites at PTC trip temperature. The PTC trip temperature of the composites below the Tg of matrix polymer (PS) has been explained in terms of higher coefficient of thermal expansion (CTE) value of PS than Ni that led to a disruption in continuous network structure of Ni even below the Tg of PS. The dielectric study of PS/Ni‐powder (40 wt%)/MWCNT (0.75 phr) composites indicated possible use of the PTC composites as dielectric material. Dynamic mechanical analysis (DMA) and thermogravimetric analysis studies revealed higher storage modulus and improved thermal stability of PS/Ni‐powder (40 wt%)/MWCNT (0.75 phr) composites than the PS/CB (10 wt%) composites. POLYM. COMPOS., 33:1977–1986, 2012. © 2012 Society of Plastics Engineers  相似文献   

17.
BACKGROUND: Recently, conducting polymers have attracted much attention, since they have interesting physical properties and many potential applications, such as in conductive coating charge storage. Hence the synthesis of conducting polymer nanocomposites is also an area of increasing research activity. RESULTS: Vermiculites (VMTs) were successfully delaminated using an acid treatment. Polyaniline (PANI)/VMT nanocomposites were prepared by in situ chemical oxidative grafting polymerization. CONCLUSION: The chemical grafting of PANI/VMTs was confirmed by Fourier transform infrared and UV‐visible spectroscopy. The percentage of grafted PANI was 142.7 wt% as a mass ratio of the grafting PANI and charged nano‐VMTs, investigated using thermogravimetric analysis. In addition, characteristic agglomerate morphology of PANI was observed in the composites using scanning electron microscopy. Thermal analyses indicated that the introduction of VMT nanosheets had a beneficial effect on the thermal stability of PANI. The electrical conductivity of the nanocomposites was 3.9 × 10?3 S cm?1, a value typical for semiconductors. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
Plasticized poly(lactic acid) (PLA)‐based nanocomposites filled with graphene nanoplatelets (xGnP) and containing poly(ethylene glycol) (PEG) and epoxidized palm oil (EPO) with ratio 2 : 1 (2P : 1E) as hybrid plasticizer were prepared by melt blending method. The key objective is to take advantage of plasticization to increase the material ductility while preserving valuable stiffness, strength, and toughness via addition of xGnP. The tensile modulus of PLA/2P : 1E/0.1 wt % xGnP was substantially improved (30%) with strength and elasticity maintained, as compared to plasticized PLA. TGA analysis revealed that the xGnP was capable of acting as barrier to reduce thermal diffusion across the plasticized PLA matrix, and thus enhanced thermal stability of the plasticized PLA. Incorporation of xGnP also enhanced antimicrobial activity of nanocomposites toward Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Listeria monocytogenes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41652.  相似文献   

19.
Blends were made from linear low‐density polyethylene (LLDPE) and various amounts of soya powder. The soya powder content was varied from 5 to 20 wt%. Polyethylene‐g‐(maleic anhydride) (PE‐g‐MA) was used as a compatibilizer. Tensile strength and elongation at break (EB) decreased with increasing soya powder content. However, Young's modulus increased with the incorporation of soya powder. The addition of PE‐g‐MA as a compatibilizer increased the tensile strength, EB, and modulus of the blends. The interfacial adhesion between soya powder and LLDPE was improved by the incorporation of PE‐g‐MA, as demonstrated by scanning electron microscopy. Increasing the content of soya powder reduced the crystallinity of the LLDPE phase. The addition of PE‐g‐MA had no significant effect on melting temperature, but the degree of crystallinity of the LLDPE was increased. The thermal stability of the blends was determined by using thermogravimetric analysis. Thermal stability decreased with increasing soya powder loading. However, the addition of PE‐g‐MA slightly increased the thermal stability of LLDPE/(soya powder) blends. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

20.
The effect of polyether polyol and amino‐functionalized multiwalled carbon nanotubes (NH2‐MWCNTs) on the thermal stability of three‐phase (epoxy/polyol/NH2‐MWCNTs) epoxy composites was investigated. Thermal stability and degradation characteristics of polyol/MWCNTs modified epoxy composites was evaluated using thermogravimetric analysis. The kinetics of thermal degradation was assessed from data scanned at 5, 10, and 20°C/min. Activation energy for degradation of epoxy nanocomposites was calculated using different differential and integral methods, that is, Kissinger's, Flynn–Wall–Ozawa, Coats–Redfern, and Horowitz–Metzger methods. In addition, the integral procedure decomposition temperature was determined to evaluate the inherent thermal stability of the modified composite system. Rate of thermal degradation in MWCNT/Polyol samples was found to be reduced significantly while activation energy of degradation was increased compared to unmodified epoxy composite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41558.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号