首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the support nature and metal dispersion on the performance of Pt catalysts during steam reforming of ethanol was studied. H2 and CO production was facilitated over Pt/CeO2 and Pt/CeZrO2, whereas the acetaldehyde and ethene formation was favored on Pt/ZrO2. According to the reaction mechanism, determined by temperature-programmed desorption (TPD) and Diffuse Reflectance Infrared Spectroscopy (DRIFTS) analysis, some reaction pathways are favored depending on the support nature, which can explain the differences observed on the resulting product distribution.  相似文献   

2.
《Ceramics International》2022,48(4):4693-4698
In this work, we report the resistive switching behavior of an amorphous La2Ti2O7 (LTO) film as sandwiched between two Pt electrodes. The resistive switching is forming-free and highly uniform. Furthermore, it exhibits self-rectifying resistive switching behaviors owing to the Schottky contact and quasi-ohmic contact formed at the top and bottom interfaces, respectively. The mechanism of switching behavior in the device is attributed to the trapping/detrapping-mediated electronic bipolar resistance switching. By fitting the current-voltage characteristics, it indicates the coexistent conduction mechanisms of Schottky emission and space-charge-limited-conduction (SCLC), while the Schottky barrier modified by electron trapping/detrapping plays a dominating role in the resistive switching process.  相似文献   

3.
The effect of the metal and reaction temperature was investigated in the conversion of MCP with hydrogen at atmospheric pressure. The highly dispersed 0.5 wt.% Pt/MoO2, 0.5 wt.% Ir/MoO2 and 0.25 wt.%–0.25 wt.% Pt–It/MoO2 metal catalysts were prepared by incipient wetness impregnation or co-impregnation methods. The most active catalyst in the conversion of MCP was Pt/MoO2 and the most selective to MCP ring opening was Ir/MoO2. At low temperature, Ir/MoO2 opened the MCP ring at the secondary–secondary position. High temperature promoted ring opening at the secondary–tertiary positions, which was attributed to the adlineation sites. At low temperatures, Pt/MoO2 and Pt–Ir/MoO2 promoted only the ring enlargement reaction while Ir/MoO2 promoted both ring opening and ring enlargement. Ring enlargement of MCP to cyclohexane and benzene was catalysed by electron deficient adduct sites, while ring opening to 2-meythylpentane (2-MP), 3-methylpentane (3-MP) and n-hexane (n-H) was catalysed by metallic sites. At high temperatures, MCP broken into C1–C5 fragments and deactivation of the catalysts was observed. The Ir/MoO2 showed the highest selectivity for cracking. The differences in selectivity were attributed to the presence of adsorbed agostic species, where the electronic environment of Ir and Pt are different.  相似文献   

4.
The preparation of carbon and titanium dioxide supported Pt catalysts through a photochemical and photocatalytic routes were investigated. The catalysts were prepared by irradiation with UV-light (365 nm) at room temperature using H2PtCl6 and C10H14O4Pt (Pt(acac)2) as platinum precursors. The kinetic studies revealed that H2PtCl6 produced metallic platinum faster than Pt(acac)2 and also showed that the amount of platinum deposited on TiO2 was higher than on carbon. The samples were characterized by X-ray diffraction, SEM/EDS and cyclic voltammetry. X-ray diffraction permitted to identify the crystallographic (111) and (200) planes from platinum metal on the catalysts synthesized, the intensity of peaks depends of the amount of platinum deposited. SEM/EDS test confirmed what it was found by the kinetics studies. The electrocatalytic activity was compared with a commercial Pt E-Tek catalyst (10 wt%). The electrochemical results showed that Pt/C-AA catalyst synthesized by liquid phase photo-deposition method has stability in acid media and high distribution of the actives sites on the electrode surfaces. It could be considered as a candidate for electro-catalyst for polymer electrolyte fuel cell. The Pt/TiO2 catalysts did not present electrochemical activity.  相似文献   

5.
席康  王勇  谢晶  王宁  周瑛  朱秋莲  卢晗锋 《化工学报》2019,70(11):4278-4288
Pt与载体间的相互作用会影响到本征Pt纳米粒子的催化活性,不同Pt前体制备Pt/CeO2催化剂会使其表现出完全不同的催化性能。分别采用金属胶体粒子原位沉积法、浸渍法以及浸渍还原的方式制备了Pt/CeO2催化剂,通过X 射线衍射、程序升温还原、X射线光电子能谱以及高分辨透射电镜对催化剂进行表征,在CO氧化以及甲苯燃烧反应中评价催化剂活性。结果表明,胶体粒子原位沉积法制备Pt/CeO2催化剂,能够将优先合成好的Pt纳米粒子直接以金属态Pt0的形式负载到载体表面,且保证其高度均匀分散,丰富的表面Pt0很好地充当了CO、甲苯反应时的活化位点,催化剂表现出优异的性能;浸渍还原法中,Pt纳米粒子之间会发生团聚现象,同时部分Pt又以Pt2+的形式与CeO2之间形成了Pt-O-Ce相互作用,载体表面暴露Pt0含量的下降是催化剂表现出较弱活性的主要原因;浸渍法中,以Pt离子对Pt进行负载,Pt完全以Pt2+的形式参与到Pt-O-Ce键成键中,表面Pt0缺失,催化剂表现出明显的失活现象。Pt/CeO2催化剂中,起主要活性作用的是金属态Pt0,胶体粒子原位沉积法能够实现Pt0的直接负载,对于提高Pt基催化剂中Pt的利用率,降低Pt资源消耗都具有重要意义。  相似文献   

6.
Dawody  Jazaer  Tönnies  Inga  Fridell  Erik  Skoglundh  Magnus 《Topics in Catalysis》2007,42(1-4):183-187
Transient experiments were performed to study sulfur deactivation and regeneration of Pt/BaO/Al2O3 and Pt/SrO/Al2O3 NO x storage catalysts. It was found that the strontium-based catalysts are more easily regenerated than the barium-based catalysts and that a higher fraction of the NO x storage sites are regenerated when H2 is used in combination with CO2 compared to H2 only.  相似文献   

7.
The adsorption of CO has been measured on a 2.5 wt% Pt/TiO2 catalyst using TPD. A somewhat surprising observation is that (i) CO2 is produced, even though oxygen is not dosed into the system, (ii) repeated experiments result in the same amount of CO2 desorption. The results appear to be due to a combination of factors–(i) is due to spillover of CO from the Pt to the TiO2 support, while (ii) is due to the diffusion of Ti3+ into the bulk of the TiO2 crystallite, which effectively removes the surface non-stoichiometry which might otherwise be expected.  相似文献   

8.
The mechanism of the CO2 reforming of methane reaction over the Pt/ZrO2 catalyst was investigated using a temporal analysis of products (TAP) reactor system. For comparative purposes, the reaction pathway using a Pt/Al2O3 catalyst was also examined. A reaction sequence is suggested for both catalysts. Over both catalysts, methane decomposition takes place over platinum. The main difference between the two catalysts concerns the carbon dioxide dissociation. Over Pt/Al2O3 this step is assisted by hydrogen. Over Pt/ZrO2 this step takes place over the zirconia support and involves surface vacancies. Moreover, large pools of formate and carbonate species are present on the zirconia. Transient studies conducted to determine the origin of carbon species accumulated during CO2 reforming revealed that more than 99% of the carbon was derived from the methane molecule over both catalysts. Over the Pt/ZrO2 catalyst, only a single very reactive carbon species was detected, while over the Pt/Al2O3 a second less active species was also formed.  相似文献   

9.
Different catalysts based on platinum and a silica, titania or mixed titania/silica support were studied in NO reduction reactions by CO and H2 in the temperature range of 25–400C. The mixed oxide catalysts showed considerably lower onset temperatures in NO/CO reactions but this coincided with a maximum in N2O formation. In NO/H2 reactions all titania containing catalysts produced more N2O than silica supported platinum at low temperatures but were more selective to N2 at high temperatures.  相似文献   

10.
Ethylene adsorption on a Pt/Au/SiO2 catalyst (2 wt% Pt; Au/Pt atomic ratio of 10) was studied using adsorption microcalorimetry and FTIR spectroscopy. Ethylene adsorption at 300 K on Pt/Au/SiO2 produced π‐bonded, di‐σ‐bonded, and ethylidyne species with an initial heat of 140 kJ/mol, compared to a heat of 157 kJ/mol for Pt/SiO2 on which only ethylidyne species formed. At 203 and 263 K, ethylene adsorbed on Pt as well as on Au surface atoms for the Pt/Au/SiO2 catalyst. Quantum chemical, DFT calculations indicate that Au exerts a significantly smaller electronic effect on Pt than does addition of Sn to Pt. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
A systematic mechanistic study of NO storage and reduction over Pt/Al2O3 and Pt/BaO/Al2O3 is carried out using Temporal Analysis of Products (TAP). NO pulse and NO/H2 pump-probe experiments at 350 °C on pre-reduced, pre-oxidized, and pre-nitrated catalysts reveal the complex interplay between storage and reduction chemistries and the importance of the Pt/Ba coupling. NO pulsing experiments on both catalysts show that NO decomposes to major product N2 on clean Pt but the rate declines as oxygen accumulates on the Pt. The storage of NO over Pt/BaO/Al2O3 is an order of magnitude higher than on Pt/Al2O3 showing participation of Ba in the storage even in the absence of gas phase O2. Either oxygen spillover or transient NO oxidation to NO2 is postulated as the first steps for NO storage on Pt/BaO/Al2O3. The storage on Pt/Ba/Al2O3 commences as soon as Pt–O species are formed. Post-storage H2 reduction provides evidence that a fraction of NO is not stored in close proximity to Pt and is more difficult to reduce. A closely coupled Pt/Ba interfacial process is corroborated by NO/H2 pump-probe experiments. NO conversion to N2 by decomposition is sustained on clean Pt using excess H2 pump-probe feeds. With excess NO pump-probe feeds NO is converted to N2 and N2O via the sequence of barium nitrate and NO decomposition. Pump-probe experiments with pre-oxidized or pre-nitrated catalyst show that N2 production occurs by the decomposition of NO supplied in a NO pulse or from the decomposition of NOx stored on the Ba. The transient evolution of the two pathways depends on the extent of pre-nitration and the NO/H2 feed ratio.  相似文献   

12.
Chemoselective hydrogenation of nerol was investigated over Pt/SiO2, Pt/H-Y and Pt/H-MCM-41 catalysts. The initial total reaction rates decreased in following order: Pt/H-Y > Pt/SiO2 > Pt/H-MCM-41. Nerol hydrogenation was found to be an apparent structure sensitive reaction. The selectivities to citronellol at 30% conversion of nerol were 65%, 55% and 25% over Pt/SiO2, Pt/H-MCM-41 and Pt/H-Y, respectively.  相似文献   

13.
Herein, we explore how OH groups on Pt/γ-AlOOH and Pt/γ-Al2O3 catalysts affect CO2 hydrogenation with H2 at temperatures from 250°C to 400°C. OH groups are abundant on γ-AlOOH, but rare at Pt-(γ-AlOOH) interface which is the most favorable site for CO2 conversion on Pt/γ-AlOOH. This makes CO2 hydrogenation on Pt/γ-AlOOH form CO weakly bonding to γ-AlOOH, which prefers to desorption from Pt/γ-AlOOH rather than further conversion, thus enhancing CO production on Pt/γ-AlOOH. Different from Pt/γ-AlOOH, OH groups are abundant at Pt-(γ-Al2O3) interface which is the most favorable site for CO2 conversion on Pt/γ-Al2O3. This promotes CO2 hydrogenation on Pt/γ-Al2O3 to form CO strongly bonding to Pt, which prefers to further hydrogenation to CH4, and thereby increases CH4 selectivity on Pt/γ-Al2O3. Therefore, the OH groups at metal-support interface are crucial factor influencing product distribution, and must be considered seriously when fabricating catalysts.  相似文献   

14.
A Pt/ZrO2 catalyst has been investigated by temperature-programmed reduction and temperature-programmed desorption of hydrogen. Hydrogen spills over from Pt onto the ZrO2 surface at about 550°C. One part of spillover hydrogen is consumed by a partial reduction of zirconia. The other part is adsorbed on the surface and is desorbed at about 650°C. This desorption is a reversible one, i.e. it can be followed by a renewed uptake of spillover hydrogen. No connection between dehydroxylable OH groups and spillover hydrogen adsorption has been observed. The adsorption sites for the reversibly bound spillover hydrogen were possibly formed during the reducing hydrogen treatment.  相似文献   

15.
ZrO2 and Pt/ZrO2 catalysts have been investigated by TPR, hydrogen chemisorption, TPDH and in the conversion ofn-hexane. At high temperature, ZrO2 takes up hydrogen. High temperature hydrogen treatment is a precondition of the catalytic activity in then-hexane conversion. Possibly, catalytically active acid sites are formed by this hydrogen treatment. The high temperature hydrogen treatment induces a strong Pt-ZrO2 interaction.  相似文献   

16.
Resistive switching random access memory (RRAM) with oxygen ion drift under electric (E)-field has been intensively studied. However, the findings are insufficient because redox reaction by oxygen ion drift occurs beneath the top electrode, and it is difficult to analyze with a nondestructive method. Therefore, an effective method to circumvent this difficulty is suggested in this study with a Pt/Al2O3/TiO2/Pt device using a single layer graphene (SLG) top electrode. Based on results from spectroscopic analyses, the SLG serves as not only an interface free electrode, but also as a highly effective indicator for proving O ion drift motion in response to the E-field in RRAM. The origin of asymmetric resistive switching is due to a redox reaction at the interface by oxygen ion drift. The endurance and operation-current distribution are significantly improved with increased thickness of the Al2O3 insertion layer, which provides carrier tunneling barrier height. The resistance ratio of the high resistance state (HRS) to the low resistance state (LRS) is greater than one order of magnitude in a log scale within 1800 cycles. This result demonstrates that control of a localized charge tunneling barrier is a key factor for reliable resistive switching of the scaled-down RRAM.  相似文献   

17.
The preparation of silica catalytic membrane reactors as well as their characterization are discussed. The deposition of platinum by the Pt mesitylene co-condensate method has proved to provide high Pt loading with good catalyst dispersion, also on SiO2 support. The catalytic activity of the silica membrane has been assessed using the hydrogenation of toluene as model reaction.  相似文献   

18.
Differences in the NOx storage-reduction (NSR) behavior of Pt/Ba/CeO2 and Pt/Ba/Al2O3 have been identified and traced to their different chemical and structural properties. The results show that Pt/Ba/CeO2 exhibits inferior NOx storage and, particularly, reduction (regeneration) activity compared to the Al2O3 supported catalyst. The incomplete reduction of the stored NOx-species in Pt/Ba/CeO2 seems to be caused by a faster and more profound reoxidation of Pt particles during the lean period as evidenced by in situ X-ray absorption spectroscopy. Interestingly, the reduction activity could be significantly improved by a pre-reduction step at mild conditions. Exposure of the Pt/Ba/CeO2 catalyst to reducing H2 atmosphere in the temperature range 300–500 °C lead to a moderate increase of Pt particle size which beneficially influenced the regeneration activity. In contrast, pre-reduction at temperatures above 500 °C was unfavorable and resulted in a severe decrease of the regeneration activity, probably due to migration of the partially reduced CeO2 onto the surface of Pt particles.  相似文献   

19.
CO2 reforming of methane was performed on Pt/ZrO2 and Pt/Ce-ZrO2 catalysts at 1073K under different reactions conditions: (i) atmospheric pressure and CH4:CO2 ratio of 1:1 and 2:1; (ii) in the presence of water and CH4:CO2 ratio of 2:1; (iii) under pressure (105 and 190 psig) and CH4:CO2 ratio of 2:1. The Pt supported on ceria-promoted ZrO2 catalyst was more stable than the Pt/ZrO2 catalyst under all reaction conditions. We ascribe this higher stability to the higher density of oxygen vacancies on the promoted support, which favors the cleaning mechanism of the metal particle. The increase of either the CH4:CO2 ratio or total pressure causes a decrease in activity for both catalysts, because under either case the rate of methane decomposition becomes higher than the rate of oxygen transfer. The Pt/Ce-ZrO2 catalyst was always more stable than the Pt/ZrO2 catalyst, demonstrating the important role of the support on this reaction.  相似文献   

20.
张峰  曾鹏  周飞  施金华  徐扬 《广东化工》2011,38(4):74-75
以F127为介孔模板剂,钛酸异丙酯为前驱体,溶胶-凝胶法在载玻片上制备了TiO2介孔膜,用光还原法在TiO2膜表面沉积贵金属Pt,用SEM、XRD、XPS等对TiO2膜进行了表征。结果表明:TiO2膜具有介孔结构,为锐钛矿晶型,沉积在TiO2表面的Pt主要以单质形式存在。光催化结果表明介孔TiO2膜具有较高的光催化活性,表面沉积贵金属Pt后,光催化活性大大提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号