首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Using lithium acetate dihydrate and tetra-n-butyl titanate as the raw materials, spinel Li4Ti5O12 was successfully synthesized by a modified rheological phase method. Thermogravimetric analysis and differential scanning calorimetry (TG–DSC) of the thermal decomposition process of the precursor and X-ray diffraction (XRD) data indicate the crystallization of lithium titanates has occurred at 580 °C, and main phase Li4Ti5O12 has obtained at 600 °C. Laser granulometer and scanning electron microscope (SEM) have been employed to estimate the particle size distribution, morphology and microstructure of the products. It reveals the prepared Li4Ti5O12 powder had a small particle size (about 140 nm) and narrow size distribution (d0.1 = 0.07, d0.5 = 0.139, d0.9 = 2.813 μm). Galvanostatic charge and discharge tests were carried out to characterize the electrochemical performances of Li4Ti5O12. The result indicates that the Li4Ti5O12 electrode material obtained from the precursor that had been experienced heat treatment at 110 °C exhibited discharge capacities of 161.6, 156.5 and 112.3 mAh g−1 after 50 cycles at current rates 1, 2.5 and 10 C, respectively, demonstrating excellent high rate performance, due to the pure and well crystallized Li4Ti5O12 with ultrafine particles and narrow size distribution.  相似文献   

2.
A number of nano-gold catalysts were prepared by depositing gold on different metal oxides (viz. Fe2O3, Al2O3, Co3O4, MnO2, CeO2, MgO, Ga2O3 and TiO2), using the homogeneous deposition precipitation (HDP) technique. The catalysts were evaluated for their performance in the combustion of methane (1 mol% in air) at different temperatures (300–600 °C) for a GHSV of 51,000 h−1. The supported nano-gold catalysts have been characterized for their gold loading (by ICP) and gold particle size (by TEM/HRTEM or XRD peak broadening). Among these nano-gold catalysts, the Au/Fe2O3 (Au loading = 6.1% and Au particle size = 8.5 nm) showed excellent performance. For this catalyst, temperature required for half the methane combustion was 387 °C, which is lower than that required for Pd(1%)/Al2O3 (400 °C) and Pt(1%)/Al2O3 (500 °C) under identical conditions. A detailed investigation on the influence of space velocity (GHSV = 10,000–100,000 cm3 g−1 h−1) at different temperatures (200–600 °C) on the oxidative destruction of methane over the Au/Fe2O3 catalyst has also been carried out. The Au/Fe2O3 catalyst prepared by the HDP method showed much higher methane combustion activity than that prepared by the conventional deposition precipitation (DP) method. The XPS analysis showed the presence of Au in the different oxidation states (Au0, Au1+ and Au3+) in the catalyst.  相似文献   

3.
Two series of Sr- or Ce-doped La1−xMxCrO3 (x = 0.0, 0.1, 0.2 and 0.3) catalysts were prepared by thermal decomposition of amorphous citrate precursors followed by annealing at 800 °C in air atmosphere. The effect of Ce and Sr on the morphological/structural properties of LaCrO3 was investigated by means of thermogravimetric/differential thermal analysis (TG/DTA) of the precursors decomposition under air, X-ray diffraction (XRD), electron paramagnetic resonance (EPR), transmission electron microscopy–X-ray energy dispersive spectroscopy (TEM–XEDS), SBET determination, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) techniques. The characterization results are employed to explain catalytic activity results for C3H6 combustion. It is shown that the lanthanum chromite perovskite structure is obtained upon thermal treatment of the sol–gel derived precursors at T > ca. 800 °C. The presence of the dopant generally induces the formation of segregated oxide phases in the samples calcined at 800 °C although some introduction of the Sr in the perovskite structure is inferred from EPR measurements. The oxidation activity becomes maximised upon formation of such doped perovskite structure.  相似文献   

4.
Ce0.9Gd0.1O1.95 powders were synthesized by spray drying and successive calcinations. The phase purity, BET surface area, and particle morphology of as-sprayed and calcined powders were characterized. After calcination above 300 °C, the powders were single phase and showed a BET surface area of 68 m2/g when calcined at 300 °C. The conductivity, in air, of sintered pellets was measured by electrochemical impedance spectroscopy (EIS) and it was found to be comparable with literature values. The activation energy for the total conductivity was around 0.83 eV. The powder calcined at lower temperature showed better sinterability and higher total conductivity due to an increased bulk conductivity.  相似文献   

5.
LiFePO4/carbon composite was synthesized at 600 °C for 4 h in an Ar atmosphere by a stearic acid assisted rheological phase method using amorphous nano-FePO4 as the iron source. XRD, SEM and TEM observations show that the LiFePO4/carbon composite has good crystallinity, ultrafine and well-dispersed particles of 60–150 nm size and in situ carbon coated on the surface of LiFePO4 crystallites. The synthesized LiFePO4/carbon composite shows a high discharge capacity of 160 mAh g−1 and 155 mAh g−1 at rates of 0.5 C and 1 C, respectively. Even at a high current density of 30 C, the material still presents a discharge capacity of 93 mAh g−1 and exhibits an excellent cycling performance.  相似文献   

6.
The employment of mineral SrSO4 crystals and powders for preparing SrTiO3 compound was investigated, with coexistence of Ti(OH)4·4.5H2O gel under hydrothermal conditions, at various temperatures (150–250 °C) for different reaction intervals (0.08–96 h) in KOH solutions with different concentrations. The complete dissolution of the SrSO4 crystal occurred at 250 °C for 96 h in a 5 M KOH solution, resulting in the synthesis of SrTiO3 particles with two different shapes (peanut-like and cubic). In contrast, very fine SrTiO3 pseudospherical particles were crystallized when SrSO4 powders were employed as precursor. Variations on the SrTiO3 particle shape and size were found to be caused by the differences in the dissolution rate of the SrSO4 phase in the alkaline KOH solution. The crystallization of SrTiO3 particles was achieved by a bulk dissolution–precipitation mechanism of the raw precursors, and this mechanism was further accelerated by increasing the reaction temperature and concentration of the alkaline media. Kinetic data depicted that the activation energy required for the formation of SrTiO3 powders from the complete consumption of a SrSO4 single crystal plate under hydrothermal conditions, is 27.9 kJ mol−1. In contrast, when SrSO4 powders were employed (28–38 μm), the formation of SrTiO3 powder proceeded very fast even for a short reaction interval of 3 h at 250 °C in a 5 M KOH solution.  相似文献   

7.
The steam reforming of phenol towards H2 production was studied in the 650–800 °C range over a natural pre-calcined (air, 850 °C) calcite material. The effects of reaction temperature, water, hydrogen, and carbon dioxide feed concentrations, and gas hourly space velocity (GHSV, h−1) were investigated. The increase of reaction temperature in the 650–800 °C range and water feed concentration in the 40–50 vol% range were found to be beneficial for catalyst activity and H2-yield. A similar result was also obtained in the case of decreasing the GHSV from 85,000 to 30,000 h−1. The effect of concentration of carbon dioxide and hydrogen in the phenol/water feed stream was found to significantly decrease the rate of phenol steam reforming reaction. The latter was probed to be related to the reduction in the rate of water dissociation as evidenced by the significant decrease in the concentration of adsorbed bicarbonate and OH species on the surface of CaO according to in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)-CO2 adsorption experiments in the presence of water and hydrogen in the feed stream. Details of the CO2 adsorption on the CaO surface at different reaction temperatures and gas atmospheres using in situ DRIFTS and transient isothermal adsorption experiments with mass spectrometry were obtained. Bridged, bicarbonate and unidentate carbonate species were formed under CO2/H2O/He gas mixtures at 600 °C with the latter being the most populated. A substantial decrease in the surface concentration of bicarbonate and OH species was observed when the CaO surface was exposed to CO2/H2O/H2/He gas mixtures at 600 °C, result that probes for the inhibiting effect of H2 on the phenol steam reforming activity. Phenol steam reforming reaction followed by isothermal oxygen titration allowed the measurement of accumulated “carbonaceous” species formed during phenol steam reforming as a function of reaction temperature and short time on stream. An increase in the amount of “carbonaceous” species with reaction time (650–800 °C range) was evidenced, in particular at 800 °C (4.7 vs. 6.7 mg C/g solid after 5 and 20 min on stream, respectively).  相似文献   

8.
Commercial anatase TiO2 powders (Tayca TKP101, TKP102) were ground with thiourea and annealed at 400 and 500 °C. Diffuse reflectance spectra (DRS) showed that the doping with thiourea shifted the TiO2 absorption towards the visible region. The absorption was observed to increase with increasing annealing temperature. Using the Kubelka–Munk relations, it was possible to determine the band-gap of the doped TiO2. Doped Tayca TiO2 TKP101 showed a band-gap of 2.12 and 2.24 eV calcined at 400 and 500 °C, respectively. Doped Tayca TiO2 TKP102 calcined at 400 and 500 °C showed in both cases a band-gap of 2.85 eV. X-ray photoelectron spectroscopy (XPS) revealed that these doped TiO2, TKP101 annealed at 400 °C and TKP102 annealed at 400 and 500 °C present interstitial N-doping while doped TKP101 annealed at 500 °C showed a peak characteristic of substitutional N-doping. S-doped materials calcined at 500 °C presented only anionic S-doping. Nitrogen adsorption studies (BET) showed a loss of specific surface area (SSA) in annealed TiO2 samples. N- and S co-doped materials showed suitable photocatalytic activity under UV illumination towards Escherichia coli inactivation and also under visible light irradiation (400–500 nm). Applying different annealing temperatures led to a variety of structures for N and S incorporated in the crystalline network. TiO2 upon annealing showed a varying degree of hydroxylation and particles sizes. This seems to affect the trapping and transfer of the charge carriers generated under light and the semiconductor performance.  相似文献   

9.
An adapted sol–gel method allowed synthesizing SmCoO3 and PrCoO3 oxides with high specific surface (ca. 28 m2 g−1) and a relatively clean perovskite phase at 600 °C, a temperature much lower than the one required in ceramic methods. The perovskites were investigated as catalysts for the oxidation of ethane in the temperature range 300–400 °C. Both catalysts were very active: ethane was activated already at 300 °C, i.e., 100 °C below the temperatures previously reported for perovskites. The main product was CO2 on both catalysts, but on PrCoO3 oxidehydrogenation (ODH) to ethylene was observed already at 300 °C, with the low selectivity. Even so, this was quite unusual for simple perovskites, and for such a low temperature. TPR data showed that praseodymium decreases the reducibility of Co3+ in the perovskite, what could explain the observed ODH, and suggest it proceeds via a Mars–van Krevelen mechanism. Kinetic study showed a similar apparent activation energy for both catalysts (ca. 80 kJ/mol), but a difference in the nature of the participating oxygen species: while on PrCoO3 both adsorbed and lattice species contribute to the reaction, on SmCoO3 contribution of adsorbed species is practically negligible, due to its very high oxygen lability. The results show that these simple perovskites may be promising catalysts for ethane oxidation at relatively low temperatures.  相似文献   

10.
TiO2 materials were prepared by sol–gel method and then impregnated with sulfuric acid and calcined using different temperatures and atmosphere (air and nitrogen). Systematic variation of these two experimental parameters makes possible to modulate the amount of surface sulfur from the impregnation procedure. The best photocatalyst for liquid phenol degradation was obtained after calcination at 700 °C in air, while gas toluene degradation optimum performance is obtained by calcination at 700 °C in nitrogen from 500 °C. Structural analysis of these materials by XRD, micro-Raman spectroscopy and FE-SEM shows that once calcined at 700 °C the material was a well-crystallized, high surface area anatase structure in all cases. The surface characterization by FTIR and XPS confirms the presence of a higher amount of sulfur species and acidic OH groups in samples partially calcined in nitrogen, and a low XPS O/Ti-atomic ratio with the O 1s peak shifted to higher binding energies (1.8 vs. 2 ± 0.1 and 530.4 eV vs. 529.8 eV, respectively, against the reference materials) for samples calcined at 700 °C, temperature at which most of sulfate species have been evolved. The paper presents an attempt to correlate the contribution of the observed structural defects within the anatase sub-surface layers and surface acidity to the different photoactivity behaviour exhibited for phenol liquid phase and toluene gas phase photodegradation.  相似文献   

11.
In this paper, the CuO/TiO2 catalysts prepared by the deposition–precipitation (DP) method were extensively investigated for CO oxidation reaction. The structural characters of the CuO/TiO2 catalysts were comparatively investigated by TG-DTA, XRD, and XPS measurements. It was shown that the catalytic behavior of CuO/TiO2 catalysts greatly depended on the TiO2-support calcination temperature, the CuO loading amount and the CuO/TiO2 catalysts calcination temperature. CuO supported on the anatase phase of TiO2-support calcined at 400 °C showed better catalytic activity than those supported on TiO2 calcined at 500 and 700 °C. Among all our investigated catalysts with CuO loading from 2% to 12%, the catalyst with 8 wt% CuO loading exhibited the highest catalytic activity. The optimum calcination temperature of the CuO/TiO2 catalysts was 300 °C. The XRD results indicated that the catalytic activity of the CuO/TiO2 catalysts was related to the crystal phase and particle size of TiO2 support and CuO active component.  相似文献   

12.
Dense membrane with the composition of SrFe0.6Cu0.3Ti0.1O3-δ (SFCTO) was prepared by solid state reaction method. Oxygen permeation flux through this membrane was investigated at operating temperature ranging from 750℃ to 950℃ and different oxygen partial pressure. XRD measurements indicated that the compound was able to form single-phased perovskite structure in which part of Fe was replaced by Cu and Ti. The oxygen desorption and the reducibility of SFCTO powder were characterized by thermogravimetric analysis and temperature programmed reduction analysis, respectively. It was found that SFCTO had good structure stability under low oxygen pressure at high temperature. The addition of Ti increased the reduction temperature of Cu and Fe. Performance tests showed that the oxygen permeation flux through a 1.5 mm thick SFCTO membrane was 0.35-0.96 ml·min ^-1·cm^-2 under air/helium oxygen partial pressure gradient with activation energy of 53.2 kJ·mol^-1. The methane conversion of 85%, CO selectivity of 90% and comparatively higher oxygen permeation flux of 5 ml·min^-1·cm^- 2 were achieved at 850℃, when a SFCTO membrane reactor loaded with Ni-Ce/Al2O3 catalyst was applied for the partial oxidation of methane to syngas.  相似文献   

13.
The role of the particle size on the electrochemical properties at 25 and at 55 °C of the LiCr0.2Ni0.4Mn1.4O4 spinel synthesized by combustion method has been determined. Samples with different particle size were obtained by heating the raw spinel from 700 to 1100 °C, for 1 h in air. X-ray diffraction patterns revealed that all the prepared materials are single-phase spinels. The main effect of the thermal treatment is the remarkable increase of the particles size from 60 to 3000 nm as determined by transmission electron microscopy. The electrochemical properties were determined at high discharge currents (1C rate) in two-electrode Li-cells. At 25 and at 55 °C, in spite of the great differences in particle size, the discharge capacity drained by all samples is similar (Qdch ≈ 135 mAh g−1). Instead, the cycling performances strongly change with the particle size. The spinels with Φ > 500 nm show better cycling stability at 25 and at 55 °C than those with Φ < 500 nm. The samples heated at 1000 and 1100 °C, with high potential (E ≈ 4.7 V), elevate capacity (Q ≈ 135 mAh g−1), and remarkable cycling performances (capacity retention after 250 cycles >96%) are very attractive materials as 5V-cathodes for high-energy Li-ion batteries.  相似文献   

14.
Sn4+-containing LDH was prepared using the co-precipitation method at constant pH, and characterized using X-ray diffraction, UV–vis diffuse reflectance spectroscopy and TG/DTG methods. The obtained product was further exposed to different thermal treatments in order to obtain nano-sized coupled ZnO/SnO2 systems with enhanced photocatalytic performances than the ones obtained by mixing the two semiconductor oxides. The formation of a well-defined ZnO/SnO2 system and the crystallite size, fully investigated using XRD, micro-Raman scattering and UV–vis DR techniques, were found to be influenced by the nature of the precursors and the calcination temperature. The photocatalytic activity of the ZnO/SnO2 systems, evaluated for the photodegradation of methyl orange (MO) dye, was studied as a function of the initial pH, catalyst loading and the calcination temperature. The metal dispersion supplied by layered structures proved to be an advantage when preparing coupled ZnO/SnO2 systems, the photocatalytic activity being 2.3 times higher comparing with the physical mixtures performances. The maximum photocatalytic activity of the coupled ZnO/SnO2 system having a layered precursor was observed when using neutral pH, at a catalyst loading of 1 g/L calcined at 600 °C for 4 h.  相似文献   

15.
Oxygen storage capacity (OSC) of CeO2–ZrO2 solid solution, CexZr(1−x)O4, is one of the most contributing factors to control the performance of an automotive catalyst. To improve the OSC, heat treatments were employed on a nanoscaled composite of Al2O3 and CeZrO4 (ACZ). Reductive treatments from 700 to 1000 °C significantly improved the complete oxygen storage capacity (OSC-c) of ACZ. In particular, the OSC-c measured at 300 °C reached the theoretical maximum with a sufficient specific surface area (SSA) (35 m2/g) after reductive treatment at 1000 °C. The introduced Al2O3 facilitated the regular rearrangement of Ce and Zr ions in CeZrO4 as well as helped in maintaining the sufficient SSA. Reductive treatments also enhanced the oxygen release rate (OSC-r); however, the OSC-r variation against the evaluation temperature and the reduction temperature differed from that of OSC-c. OSC-r measured below 200 °C reached its maximum against the reduction temperature at 800 °C, while those evaluated at 300 °C increased with the reduction temperature in the same manner as OSC-c.  相似文献   

16.
YAG precursors were synthesized by the urea method in aqueous solution using supercritical carbon dioxide and ethanol fluid drying technique, respectively. The composition of the precursors, the phase formation process and the properties of the calcined powders were investigated by means of XRD, IR, TG/DSC, BET, TEM and SEM. Compared with the classically prepared powders at room temperature in air, the amorphous precursor dried by supercritical CO2 fluid was loosely agglomerated and directly converted to pure YAG at about 900 °C. The resultant YAG powders showed good dispersity with an average crystallite size about 20 nm and specific surface area of 52 m2 g−1. However, the precursor dried by supercritical ethanol fluid was crystalline. Extensive phase segregation occurred during the drying process and resulted in the formation of separate phases such as monoclinic Y(OH)3 and pseudoboehmite. YAM and YAP phases appeared in the calcination process and phase pure were not detected until 1200 °C.  相似文献   

17.
A silica-supported Ag system made by the incipient wetness impregnation method was investigated in the reaction of heterogeneous catalytic decomposition of ozone. It was established that the catalytic ozone decomposition on Ag/SiO2 proceeded in the temperature interval −40 °C to 25 °C as a first order reaction with activation energy of 65 kJ/mol (pre-exponential factor 5.0 × 1014 s−1). Based on the results from the instrumental methods (SEM, XRD, XPS, EPR, TPD) it can be concluded that in presence of ozone the silver is oxidized to a complicated mixture of Ag2O3 and AgO. Due to the high activity and stability of the Ag/SiO2 catalyst, it is promising for neutralization of waste gases containing ozone.  相似文献   

18.
A novel one-shell high temperature and high pressure semi-continuous reactor has been developed for the study of the Boudouard reaction at temperatures up to 820 °C and pressures up to 32.5 MPa. Semicontinuous gasification of charcoal using supercritical CO2 has been achieved at conversions up to 90.8% (w/w) at LSHV between 20 and 30 h−1 after 5–9 h. A gasification model is proposed and validated. Effective rates of gasification (1.32 ± 0.12) × 10−6 to (6.10 ± 2.03) × 10−5 s−1 were obtained. The results indicated that this method is technically feasible for the on-line production of high pressures streams of CO/CO2 in the lab for carrying out further chemistries, avoiding the use of CO high pressure bottles.  相似文献   

19.
Aluminum nitride (AlN) ceramics, prepared with Y2O3 and CaO sintering additives, have been densified in an Al2O3 crucible at temperatures of up to 1650 °C and 1700 °C using a conventional MoSi2 heating element furnace. The results of this study show that relative densities in excess of 99% of theoretical and a relatively high-thermal conductivity of 147 W m−1 K−1 have been achieved for feedstock materials prepared with combined addition of 1 wt.% Y2O3 and 1 wt.% CaO. All of the phases in sintered samples have been shown to be crystalline AlN and minor amount of secondary phases, were detected such as enriched Y- and Ca-aluminates by the XRD patterns, back-scattered imagery and microprobe analysis. The advantage of using the particular experimental system and sintering condition is considered to be amenable to lower production cost and enhance the feasibility of mass production. Critical temperature for AlN densification to obtain the highest density is about 1650 °C.  相似文献   

20.
Spinel nano-Co3O4 was prepared by solid-state reaction at room temperature and investigated for selective catalytic reduction of NOx by NH3 (NH3-SCR). Although suffering from pore filling and plugging, treatment of this catalyst by SO2 showed novel promoting effect on NH3-SCR above 250 °C. Bulk cobalt sulfate was observed over the sulfated Co3O4 with XRD, which would be an active component for NH3-SCR. The sulphated Co3O4 catalyst exhibited good resistance to SO2 (500 ppm, 100 ppm) and 10% H2O at a space velocity of about 25 000 h−1 at 300 °C, as tested for 12 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号