首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用三氯氧磷和异辛醇对纳米二氧化硅(SiO2)进行表面改性,并采用双螺杆挤出机制备了聚丙烯(PP)/表面改性纳米SiO2复合材料。采用傅里叶变换红外光谱仪、差示扫描量热仪、万能材料试验机等研究了表面改性SiO2和复合材料的性能。结果表明,有机磷改性后 SiO2粒子的表面没有羟基,有机磷的接枝率为1.6 %,粒度分布于4~50 μm之间,并且有良好的疏水性,复合材料的断面较规整,熔点与PP基本一致;复合材料在失重的各个阶段对应的温度均比PP高7~10 ℃;改性纳米SiO2能够改善PP复合材料的热稳定性和阻燃性能。  相似文献   

2.
In this study, the self‐made nano‐hydroxyapatite (HA) and poly(butylene adipate‐co‐butylene terephthalate) copolyesters (PBAT) were used as fillers, and composite films of HA/PLA (PLA, polylactide) and HA/PBAT/PLA systems were prepared. The micromorphology, mechanical properties, thermal properties, crystallinity, water vapor permeability and oxygen permeability of the composite films were studied. The results show that the self‐made HA has a porous rod‐like structure with a size of 30–50 nm. PBAT was dispersed uniformly in the HA/PLA matrix in the form of spherical particles and formed many pores and holes. The tensile strength, elongation at break and modulus of elasticity of HA/PLA composite films were increased by adding 10 wt% PBAT. The addition of HA and PBAT played a synergistic function in improving the crystallinity of the composite films. The water vapor and oxygen permeabilities of HA/PLA and HA/10%PBAT/PLA composite films can be regulated by adjusting the amount of HA. The results of this study indicate that composite films with higher water vapor and oxygen permeabilities exhibit great potential for applications in green packaging and fresh‐keeping packaging. © 2019 Society of Chemical Industry  相似文献   

3.
The effect of various fillers on the mechanical, barrier, and flammability properties of polypropylene (PP) was studied. PP was filled with 4 wt% of nano‐sized calcium carbonate, titanium dioxide, organoclay, and multiwalled carbon nanotube (MWCNT). For comparison, micron‐sized calcium carbonate was also studied. Two‐step masterbatch dilution approach of the composites suggested no or only minor improvements in Young's modulus and tensile yield strength, whereas their ductility decreased compared to coupling agent‐modified PP matrix. The water vapor transmission results of filled films showed increased permeability compared to their coupling agent‐modified counterpart. Oxygen permeability, however, decreased for the composites. The MWCNT‐filled matrix showed the highest barrier and fire performance, attributed mainly to its higher filler volume content, but also other reasons such as the effect of filler dispersion, composite's thermal stability, and polymer crystallinity were discussed.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

4.
A fumed hydrophilic nano‐silica‐filled polypropylene (PP) composite was blended with a liquid‐crystalline polymer (LCP; Rodrun LC5000). The preblended polymer blend was extruded through a capillary die; this was followed by a series of rheological and morphological characterizations. The viscosity of the PP matrix increased with the addition of the hydrophilic nano‐silica. At shear rates between 50 and 200 s?1, the composite displays marked shear‐thinning characteristics. However, the incorporation of LC5000 in the PP composite eliminated the shear‐thinning characteristic, which suggests that LC5000 destroyed the agglomerated nano‐silica network in the PP matrix. Although the viscosity ratio of LCP/PP was reduced after the addition of nano‐silica fillers, the LCP phases existed as droplets and ellipsoids. The nano‐silicas were concentrated in the LC5000 phase, which hindered the formation of LCP fibers when processed at high shear deformation. We carried out surface modification of the hydrophilic nano‐silica to investigate the effect of modified nano‐silica (M‐silica) on the morphology of the PP/LC5000 blend system. Ethanol was successfully grafted onto the nano‐silica surface with a controlled grafting ratio. The viscosity was reduced for PP filled with ethanol‐M‐silica when compared to the system filled with untreated hydrophilic nano‐silica. The LC5000 in the (PP/M‐silica)/LC5000 blend existed mainly in the form of fibrils. At high shear rates (e.g., 3000 s?1), the LC5000 fibril network was formed at the skin region of the extrudates. The exclusion of nano‐silica in the LC5000 phase and the increased viscosity of the matrix were responsible for the morphological changes of the LCP phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1484–1492, 2003  相似文献   

5.
本文研究了单一和混合偶联剂表面改性的柠檬石膏对柠檬石膏/聚丙烯复合材料的力学性能,结晶度,熔点的影响;结果表明:单一偶联剂表面改性的柠檬石膏使柠檬石膏/PP复合材料的拉伸强度,弯曲强度和弯曲模量较PP有不同程度提高,钛酸酯和铝酸酯偶联剂对柠檬石膏的表面改性具有较好效果。混合偶联剂表面改性的柠檬石膏使柠檬石膏/PP复合材料的冲击强度较单一偶联剂表面改性柠檬石膏填充PP的复合材料提高了34.7%,而拉伸强度,弯曲强度和弯曲模量均有一定下降。差示扫描量热(DSC)分析结果显示柠檬石膏的加入可以提高聚丙烯的结晶度,对复合材料的熔点几乎没有影响;柠檬石膏的表面改性对复合材料中PP的结晶度和熔点均没有明显影响。  相似文献   

6.
The present study was conducted to compare the structure and properties of conventional and so‐called “high‐crystallinity” (hcr) polypropylene (PP) and to establish characteristic features of the latter that are responsible for its superior thermal and mechanical performance. Moreover, structure–properties relationships of hcr PP blends with metallocene‐catalyzed, linear low‐density polyethylene (mLLDPE) were compared with those of conventional PP/mLLDPE blends. In Part 1, relationships between rheological behavior (viscosity and melt density) and thermal (transition temperatures and level of crystallinity) and mechanical properties (impact strength and Young's modulus) were analyzed with reference to composition. The rheological and MDSC tests showed that both types of the blends were miscible at the processing temperatures, whereas immiscible in the solid state and in vicinity of the PP melting point. It was found that the improved mechanical properties and the extraordinary high crystallization temperature of hcr PP (and, correspondingly, hcr PP/mLLDPE blends) are not due to the assumed high level of crystallinity but due to alteration of internal structure of this polypropylene. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1591–1599, 2000  相似文献   

7.
The biopolymer poly‐3‐hydroxybutyrate‐co‐3‐hydroxyvalerate (PHBV) is a promising material for packaging applications but its high brittleness is challenging. To address this issue, PHBV was blended with nine different biopolymers and polymers in order to improve the processing and mechanical properties of the films. Those biopolymers were TPS, PBAT, a blend of PBAT + PLA, a blend of PBAT + PLA + filler, PCL and PBS, and the polymers TPU, PVAc, and EVA. The extruded cast films were analyzed in detail (melting temperature, crystallinity, mechanical properties, permeation properties, and surface topography). A decrease in crystallinity and Young's modulus and an increase in elongation at break and permeability were observed with increasing biopolymer/polymer concentration. In PHBV‐rich blends (≥70 wt % PHBV), the biopolymers/polymers PCL, PBAT, and TPU increased the elongation at break while only slightly increasing the permeability. Larger increases in the permeability were found for the films with PBS, PVAc, and EVA. The films of biopolymer/polymer‐rich blends (with PBAT, TPU, and EVA) had significantly different properties than pure PHBV. A strong effect on the properties was measured assuming that at certain biopolymer/polymer concentrations the coherent PHBV network is disrupted. The interpretation of the permeation values by the Maxwell–Garnett theory confirms the assumption of a phase separation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46153.  相似文献   

8.
BACKGROUD: Melt vibration technology was used to prepare injection samples of polypropylene (PP)/nano‐CaCO3 blends. It is well known that nano‐CaCO3 particles are easy to agglomerate owing to their large surface energy. Improving the distribution of nano‐CaCO3 particles in PP/nano‐CaCO3 blends is very important for enhancing the mechanical properties. In this work, low‐frequency vibration was imposed on the process of injection molding of PP/nano‐CaCO3 blends. The aim of importing a vibration field was to change the crystal structure of PP as we studied previously and improve the distribution of nano‐CaCO3 particles. Furthermore, the mechanical properties were improved. RESULTS: Through melt vibration, the mechanical properties of PP/nano‐CaCO3 samples were improved significantly. Compared with conventional injection molding, the enhancement of the tensile strength and impact strength of the samples molded by vibration injection molding was 17.68 and 175.96%, respectively. According to scanning electron microscopy, wide‐angle X‐ray diffraction and differential scanning calorimetry measurements, it was found that a much better dispersion of nano‐CaCO3 in samples was achieved by vibration injection molding. Moreover, the crystal structure of PP in PP/CaCO3 vibration samples changed. The γ crystal form was achieved at the shear layer of vibration samples. Moreover, the degree of crystallinity of PP in vibration samples increased 6% compared with conventional samples. CONCLUSION: Concerning the microstructure, melt vibration could effectively change the crystal structure and increase the degree of crystallinity of PP besides improving the distribution of nano‐CaCO3 particles. Concerning the macrostructure, melt vibration could enhance the mechanical properties. The improvement of mechanical properties of PP/nano‐CaCO3 blends prepared by low‐frequency vibration injection molding should be attributed to the even distribution of nano‐CaCO3 particles and the formation of γ‐PP and the increase of the degree of cystallinity. Copyright © 2007 Society of Chemical Industry  相似文献   

9.
Morphological, optical, and barrier properties of PP/MMT nanocomposites   总被引:2,自引:2,他引:0  
In this work, nanocomposites of polypropylene (PP) and organically modified montmorillonite (MMT) were evaluated concerning optical, mechanical, and barrier properties. The nanocomposites were prepared by melt compounding using a twin-screw extruder. The PP/MMT films were evaluated by measurements of oxygen and water vapor permeability, and to verify its efficiency as a barrier to ultraviolet radiation (by UV–Vis spectroscopy). MMT has demonstrated a high ability to improve the gas barrier properties of the PP. Furthermore, MMT showed optical efficiency acting as a UV absorber, and presented higher absorptions at wavelengths between 215 and 254 nm. These results suggest that these nanocomposite materials have great potential for applications such as films with superior properties for food packing.  相似文献   

10.
To improve the impact toughness of polypropylene (PP), nano‐CaCO3 was prepared by an in situ synthesis. The surface of the nano‐CaCO3 was modified by KH‐550 silane coupling agent and NDZ‐401 titanium acid ester coupling agent. Nano‐CaCO3/PP composite materials were fabricated through a melt‐blending method and characterized, and their mechanical properties were analyzed. The impact toughness and the tensile strength of the PP were improved significantly by the incorporation of nano‐CaCO3. When the weight fraction of nano‐CaCO3 was 2%, the maximum impact toughness and tensile strength of the PP nanocomposites were 293% and 259%, respectively, of the values for neat PP. Observation of the impact fracture surface of the nanocomposites indicated that the dispersion of nano‐CaCO3 modified by NDZ‐401 coupling agent was more homogeneous than that of nano‐CaCO3 modified by the KH‐550 silane coupling agent. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

11.
镁盐晶须填充改性聚丙烯材料的研究   总被引:4,自引:0,他引:4  
研究了镁盐晶须(M-HOS)填充改性聚丙烯(PP)材料的流动性能、力学性能、热变形温度和结晶度等。结果表明:镁盐晶须能明显改善PP材料的力学性能,但加工时PP基体的粘度、加工时间和加工装备性能,对晶须的长径比和改性材料的增强效果有严重影响;添加晶须能较大程度提高PP材料的热变形温度,但对PP改性材料的熔点和结晶度几乎没有影响。  相似文献   

12.
Poly(vinyl alcohol)/nano‐silica (PVA/nano‐SiO2) films were prepared through extrusion blowing with the addition of water and glycerin as plasticizer. The characteristic properties of PVA/nano‐SiO2 films were investigated by differential scanning calorimetry, dynamic mechanical analysis, Haake torque rheometry, and atomic force microscopy (AFM). The results showed that the mechanical properties of PVA/nano‐SiO2 were improved dramatically. The tensile strength of the nanofilms increased from 62 MPa to 104 MPa with loading 0.3 wt % nano‐SiO2 and the tear strength was improved from 222 KN/m to 580 KN/m. The crystallinity of the films loaded with 0.4 wt. % nano‐SiO2 decreased from 32.2% to 21.0% and the AFM images indicated that the amorphous region of nanofilms increased with increasing nano‐SiO2 content. The storage modulus and loss modulus increased to two and nearly three times with 0.3 wt % nano‐SiO2 loading. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
A series of polyimide (PI)/silica hybrid films were prepared by sol–gel method, using hydrolyzed tetraethoxysilane and poly amic acid‐imides (PAA‐Is), which were different imidization degree controlled by chemical imidization method. The imidization degree was characterized by Fourier transform infrared spectra and their corresponding morphology was characterized by scanning electron microscopy. The results show that there are two kinds of silica particles and their formative morphology obeys the double phase separation mechanism. According to the increase of PAA‐I imidization degree, amount of nano silica particles decreased and the diameter of macro silica particles increased in the hybrid films. Tensile testing, dynamic mechanical analysis, and thermal mechanical analysis results show that, according to the amount of nano silica particles increasing, the hybrids have the higher the mechanical properties, glass transition temperature (Tg), and thermal expansion coefficient. Through controlling PI/silica hybrid films microstructure, its mechanical properties can be controlled. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Nanocomposite powders from polypropylene filled with surface modified and unmodified fumed silica have been prepared from polymer solution to achieve improved mixing and have been forwarded to fiber melt spinning. The surface of the fumed silica was modified with dodecyl alkoxy silanes. Crystallization velocity and viscosity of the PP nanocomposites thereof were determined to ensure good melt spinning processing conditions for all composite compositions. Upon addition of untreated filler particles, a shear thinning and an increased crystallization velocity of the polymer melt was found, while only minor changes were detected in the presence of surface modified fumed silica particles. The composites and the polymer fibers made from these powder composites by melt spinning were mainly characterized by optical microscopy (OM), scanning electron microscopy (SEM), mechanical measurements, differential scanning calorimetry (DSC), and solid‐state NMR. The unmodified fumed silica was found to have a strong influence on the mechanical fiber properties, while the surface modified silica only a small one. Fibers were additionally characterized with respect to the uniformity, the PP crystallinity, moisture absorption, and the water contact angle. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 218–227, 2007  相似文献   

15.
In this article, we present a process for preparing organovermiculites, which consist of expanded vermiculite (EVMT)–poly(vinyl alcohol) (PVOH) created by the mechanical ball‐milling of EVMT in a PVOH–water solution. We then discusses the influence of EVMT–PVOH on the barrier performance, crystallization behavior, thermal stability, and mechanical properties of modified blown polypropylene (PP) films. EVMT was intercalated and exfoliated by PVOH macromolecules to obtain a kind of hybrid EVMT–PVOH. PVOH served as both an intercalating agent into EVMT and a compatibilizer between EVMT and PP. Compared with the original (unmodified) PP, when the EVMT loading ranged from 0.1 to 2.0%, although the crystallinity decreased for most PP films, the thermal stability and mechanical properties all improved. Moreover, EVMT platelike particles with a high aspect ratio (ca. 550) dispersed in the PP matrix also improved the barrier properties of the modified PP films, which was in accordance with the Nielsen model. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42846.  相似文献   

16.
Poly‐lactic acid (PLA) nanocomposite film was prepared with untreated and silane treated sepiolite through solution casting method. Sepiolite is found to be promising nano inorganic filler used to prepare biodegradable PLA nanocomposite films. The effect of sepiolite loading on the thermal, mechanical, gas permeability, and water vapor permeability (WVP) properties of the films was investigated. X‐ray diffraction analysis revealed the crystallinity index and well dispersed sepiolite in PLA/sepiolite thin films. By modifying sepiolite, depending on the nanoclay content, the mechanical properties of films were enhanced. PLA/sepiolite films exhibited improved gas barrier and WVP properties compared to neat PLA. The scanning electron microscope results demonstrated that there is a good interface interaction between sepiolite and PLA. The surface treatment of sepiolite increased the adhesion of the PLA matrix to the sepiolite nanoclay which yielded better mechanical properties of the films as compared to pure PLA. It was observed after 1.5% wt sepiolite, nano‐filler tended to agglomerate, therefore mechanical and barrier properties of films decreased. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41428.  相似文献   

17.
采用模压成型制备了聚乳酸(PLA)/聚丙烯(PP)和PLA/PP/淀粉两种复合材料。主要研究了复合材料的热性能、力学性能和降解性能。结果表明:对于PLA/PP复合材料而言,复合材料的熔融温度先增加后降低,结晶度随PLA的含量增加而变大,而且出现了结晶双峰。力学性能相较与纯PLA,断裂伸长率明显提高,拉伸强度有所下降,最大下降28.02 MPa。降解性能随PLA增加而增强。而对于PLA/PP/淀粉复合材料,熔融温度变为先降低后增加的趋势,复合材料的玻璃化温度也减小,材料的可塑性得到提高;在PLA/PP比例相同条件下,PLA的结晶度有明显提高,PLA的结晶峰强度增加。对于力学性能,淀粉的加入,明显降低了其拉伸强度和断裂伸长率,PLA与PP质量比为3/7时,表现出硬而韧的特性,材料具有单向拉伸,不会立即脆断。对于材料降解性能,淀粉的存在对复合材料的降解能力得到明显的提高,当PLA与PP质量比为3/7时,材料的降解率最高为14.78%,是PLA/PP复合材料最大降解率的4.3倍,并且材料上出现了黄褐色斑点。  相似文献   

18.
用自制的马来酸酐接枝聚苯乙烯为相容剂,与改性聚丙烯(PP)混合造粒作为芯层料,以聚苯乙烯和相容剂为皮层料,将芯层料与皮层料以体积比1:1的比例熔融复合纺丝,制得皮芯复合纤维,对改性PP的结构和皮芯复合纤维性能进行了研究。结果表明:马来酸酐已接枝到聚丙烯上,皮芯复合纤维相对于纯PP纤维,其熔点下降,结晶温度上升;电镜分析表明皮芯复合纤维的皮芯之间没有明显的裂缝,其相容性得到改善;与没有改性的PP与聚苯乙烯复合纤维比较,皮芯复合纤维的力学性能得到明显的提高。  相似文献   

19.
通过原位聚合制备了聚丙烯酸丁酯 (PBA )改性蒙脱土 (MMT ) ,与聚丙烯 (PP)熔融复合制成PP/MMT纳米复合材料 ,系统地研究了复合材料的熔融、结晶行为和力学性能。结果表明 :随着处理MMT的BA用量的增加 ,PP/MMT纳米复合材料中PP相的结晶度、熔点和结晶温度明显提高 ,结晶速度加快 ;复合材料的拉伸强度变化不大 ,但拉伸模量和冲击强度有显著提高。当BA/OMMT质量比为 1/ 12左右时 ,复合材料的韧性趋于平衡值 ,而拉伸模量出现最大值  相似文献   

20.
Polypropylene (PP)/wood‐fiber (WF) composites were prepared by intermeshing co‐rotating twin screw extruder, and microcellular closed cell PP/WF composite foams were prepared by using pressure‐quenched batch process method. The effect of various compatibilizers on the mechanical properties, morphology, crystallinity, rheological properties, and foamability of PP/WF composites were investigated. The results showed that PP/WF composite with addition of PP‐g‐MA as compatibilizer had the highest tensile strength, stiffness, and crystallinity, after foaming, it showed highest relative density and cell density, as well as the smallest cell size. Higher crystallinity of PP/WF composites, showed higher stiffness and higher relative density. J. VINYL ADDIT. TECHNOL., 19:250–257, 2013. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号