首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The present contribution describes an innovation in the copolymerization of cyclic monomers, ε‐caprolactam (ε‐CL) and 2,2‐dimethyltrimethylene carbonate (DTC), with ethyl diazoacetate (EDA). The characterizations of the obtained copolymers, poly(EA‐ran‐EDA‐ran‐ε‐CL) and poly(EA‐ran‐EDA‐ran‐DTC) (where EA refers to the ethyl acetate group from EDA after nitrogen release), were performed using 1H NMR and 13C NMR spectroscopies and size exclusion chromatography. Under optimized conditions, the copolymer of ε‐CL with EDA possessing a number‐average molar mass (Mn) of 1300 g mol?1 and dispersity of 2.12 as well as that of DTC with EDA with Mn of 8000 g mol?1 and dispersity of 1.47 were obtained. The incorporation of the azo group in the obtained copolymers was determined from the results of elemental analysis (3.30–10.22% nitrogen) and Fourier transform infrared spectroscopy. Furthermore, the thermal properties of the obtained copolymers were examined using differential scanning calorimetry. X‐ray diffraction results showed that the synthesized copolymers were amorphous. © 2014 Society of Chemical Industry  相似文献   

2.
Carboxyl‐terminated poly(2‐ethyl hexyl acrylate) (CTPEHA) having various molecular weights were synthesized by bulk polymerization in the form of liquid rubber. The liquid rubbers (LR‐1 to LR‐4) were characterized by 13C‐NMR spectroscopic analysis, nonaqueous titration, and vapor‐pressure osmometry (VPO). The liquid rubber having the lowest molecular weight (M?n = 3600) was prereacted with the epoxy resin and the modified epoxy networks were made by curing with an ambient temperature curing agent. The modified epoxy networks containing different concentrations of CTPEHA were evaluated with respect to their thermal and impact properties. The optimum properties were obtained at about 10–15 phr of CTPEHA concentration (phr stands for parts per hundred parts of epoxy resin). Fracture surface analysis by scanning electron microscopy (SEM) indicated the presence of a two‐phase microstructure. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1792–1801, 2001  相似文献   

3.
N‐Phenylmaleimide–N‐(p‐hydroxy)phenylmaleimide–styrene terpolymer (HPMS), carrying reactive p‐hydroxyphenyl groups, was prepared and used to improve the toughness of cyanate ester resins. Hybrid modifiers composed of N‐phenylmaleimide–styrene copolymer (PMS) and HPMS were also examined for further improvement in toughness. Balanced properties of the modified resins were obtained by using the hybrid modifiers. The morphology of the modified resins depends on HPMS structure, molecular weight and content, and hybrid modifier compositions. The most effective modification of the cyanate ester resin was attained because of the co‐continuous phase structure of the modified resin. Inclusion of the modifier composed of 10 wt% PMS (Mw 136 000 g mol?1) and 2.5 wt% HPMS (hydroxyphenyl unit 3 mol%, Mw 15 500 g mol?1) led to 135% increase in the fracture toughness (KIC) for the modified resin with a slight loss of flexural strength and retention of flexural modulus and glass transition temperature, compared with the values for the unmodified resin. Furthermore, the effect of the curing conditions on the mechanical and thermal properties of the modified resins was examined. The toughening mechanism is discussed in terms of the morphological and dynamic viscoelastic behaviour of the modified cyanate ester resin system. © 2001 Society of Chemical Industry  相似文献   

4.
The design and the development of novel scaffold materials for tissue engineering have attracted much interest in recent years. Especially, the prepared nanofibrillar scaffold materials from biocompatible and biodegradable polymers by electrospinning are promising materials to be used in biomedical applications. In this study, we propose to produce low‐cost and cell‐friendly bacterial electrospun PHB polymeric scaffolds by using Alcaligenes eutrophus DSM 545 strain to PHB production. The produced PHB was characterized by Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared Spectroscopy (FTIR). Nanofibrous scaffolds were fabricated via electrospinning method that has a fiber diameter approximately 700–800 nm. To investigate cell attachment, cell growth, and antioxidant enzyme activity on positively and negatively charged PHB scaffold, PHB surface was modified by plasma polymerization technique using polyethylene glycol (PEG) and ethylenediamine (EDA). According to the results of superoxide dismutase (SOD) activity study, PEG‐modified nanofibrillar scaffolds indicated more cellular resistance against oxidative stress compared to the EDA modification. As can be seen in cell proliferation results, EDA modification enhanced the cell proliferation more than PEG modification, while PEG modification is better as compared with nonmodified scaffolds. In general, through plasma polymerization technique, surface modified nanofibrillar structures are effective substrates for cell attachment and outgrowth. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
Calcium alginate gel beads containing insect repellent N,N‐diethyl‐3‐methylbenzamide (CAGBDs) were modified via grafting copolymerization with a vinyl monomer. CAGBDs (5 g) were initiated with 8.5 × 10?2 mol/L potassium persulfate and 7.0 × 10?2 mol/L sodium bisulfite at the ambient temperature for 10 min, and then 6.22 mol/L acrylonitrile was added in droplets; the mixture was allowed to react at the same temperature for another 30 min. The effects of reaction conditions such as the stirring speed and monomer concentration on the modification of CAGBDs were investigated. Scanning electron microscopy analysis showed that the surface of modified CAGBDs was compact enough to keep N,N‐diethyl‐3‐methylbenzamide from touching. The release rate of N,N‐diethyl‐3‐methylbenzamide from modified CAGBDs was slower than that from unmodified CAGBDs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4850–4855, 2006  相似文献   

6.
The thermal properties and mechanical properties are the key factors of phase‐change microcapsules (microPCMs) in energy‐storage applications. In this study, microPCMs based on an n‐octadecane (C18) core and a melamine–urea–formaldehyde (MUF) shell supplemented with O2‐plasma‐modified multiwalled carbon nanotubes (CNTs) were synthesized through in situ polymerization. Meanwhile, two different addition methods, the addition of modified CNTs into the emulsion system or into the polymer system, were compared and examined. Scanning electron microscopy micrographs showed that the microPCMs were spherical and had a broadened size distribution. Fourier transform infrared testing demonstrated that the modified CNTs did not affect C18 coated by MUF resin. The results indicate that the thermal conductivity and mechanical properties of the microPCMs were remarkably improved by the addition of a moderate amount of modified CNTs, but the heat enthalpy and encapsulated efficiency decreased slightly. Moreover, the thermal conductivity and mechanical properties of microPCMs modified with CNTs directly added to the polymer system were superior to those with CNTs added to emulsion system. In particular, when 0.2 g of modified CNTs were added to the polymer system, the thermal conductivity of the microPCMs was improved by 225%, and the breakage rates of the microPCMs at 4000 rpm for 5, 10, and 20 min decreased by 74, 72, and 60%, respectively, compared with that of the microPCMs without modified CNTs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45269.  相似文献   

7.
Aminopropyl‐terminated poly(dimethylsiloxane) (ATPS) with different molecular weights was prepared by base‐catalyzed equilibration of octamethylcyclotetrasiloxane and 1,3‐bis(3‐aminopropyl)‐1,1,3,3‐tetramethyldisiloxane with different ratios. Their number‐average molecular weights (Mn) were determined by end–group analysis, and intrinsic viscosity ([η]) in toluene was measured with a Ubbelohde viscometer. A relationship between Mn and [η] was obtained for ATPS. For 1.0 × 104 < Mn < 6.0 × 104, it was in accord with [η]toluene,25°C = 5.26 × 10?2 Mn0.587. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 975–978, 2001  相似文献   

8.
Lipase (EC 3.1.1.3) was immobilized on cellulose acetate–TiO2 gel fibre by the sol–gel method. The immobilized lipases were used for esterification of n‐butyric acid with n‐butyl alcohol and enantioselective acylation of (R, S)‐phenylethanol using vinyl acetate as an acyl donor. Compared with native lipase, the activity of the immobilized lipase was stable and relatively unaffected by the water content of the solvent and the substrate concentration. The data indicate that the lipases are immobilized on the fibre surface and that enzyme activity is influenced by bound water. However, the thermal reactivity and enantioselectivity of the immobilized lipase were less than those of native lipase. This may not reflect thermal inactivation of the enzyme but rather significant thermal contraction of the gel fibre by cellulose crystallization, resulting in liberation of bound water and a decrease in the amount of enzyme which is available for the reaction. Copyright © 2001 Society of Chemical Industry  相似文献   

9.
A new type of lithium salts, —SO2NLiSO2OCH2(CF2)nCH2Om— (LiPPFASI, where n = 2, 3, 4, 6, and 7), was used as salts in poly(ethylene oxide) (PEO)‐based solvent‐free electrolytes. The conductivity and electrochemical stability behaviors were studied. The results showed the electrolytes almost have a similar conductivity and the PEO–LiPPFASI (n = 3, EO/Li = 10) was the relatively better system under the experiment conditions. Moreover, most systems were found to be oxidatively stable up to 5.5 V versus Li/Li+ and the lithium deposition‐stripping process on the electrode was reversible for all the polymer electrolytes. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1882–1885, 2001  相似文献   

10.
Four series of noble networks were synthesized with acrylic acid (AAc) copolymerized with varying amount of 2‐hydroxy propyl methacrylate or dodecyl methacrylate (AAc/HPMA or AAc/DMA; 5:1 to 5:5, w/w) in the presence of ethylene glycol dimethacrylate (EGDMA; 1, 5, 10, 15, and 20%, w/w) as a crosslinker and ammonium per sulfate (APS) as an initiator. Each of the networks was used to immobilize a purified lipase from Pseudomonas aeruginosa MTCC‐4713. The lipase was purified by successive salting out with (NH4)2SO4, dialysis, and DEAE anion exchange chromatography. Two of the matrices, E15a, i.e. [poly (AAc5co‐DMA1cl‐EGDMA15)] and I15c, i.e. [poly (AAc5co‐HPMA3cl‐EGDMA15)], that showed relatively higher binding efficiency for lipase were selected for further studies. I15c‐hydrogel retained 58.3% of its initial activity after 10th cycle of repetitive hydrolysis of p‐NPP, and I15c was thus catalytically more stable and efficient than the other matrix. The I15c‐hydrogel‐immobilized enzyme showed maximum activity at 65°C and pH 9.5. The hydrolytic activity of free and I15c‐hydrogel‐immobilized enzyme increased profoundly in the presence of 5 mM chloride salts of Hg2+, NH4+, Al3+, K+, and Fe3+. The immobilized lipase was preferentially active on medium chain length p‐nitrophenyl acyl ester (C:8, p‐nitrophenyl caprylate). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4636–4644, 2006  相似文献   

11.
Immobilization glucoamylase onto plain and a six‐carbon spacer arm (i.e., hexamethylene diamine, HMDA) attached poly(2‐hydroxyethylmethacrylate‐ethyleneglycol dimethacrylate) [poly(HEMA‐EGDMA] microspheres was studied. The microspheres were prepared by suspension polymerization and the spacer arm was attached covalently by the reaction of carbonyl groups of poly(HEMA‐EGDMA). Glucoamylase was then covalently immobilized either on the plain of microspheres via CNBr activation or on the spacer arm‐attached microspheres via CNBr activation and/or using carbodiimide (CDI) as a coupling agent. Incorporation of the spacer arm resulted an increase in the apparent activity of the immobilized enzyme with respect to enzyme immobilized on the plain of the microspheres. The activity yield of the immobilized glucoamylase on the spacer arm‐attached poly(HEMA‐EGDMA) microspheres was 63% for CDI coupling and 82% for CNBr coupling. This was 44% for the enzyme, which was immobilized on the plain of the unmodified poly(HEMA‐EGDMA) microspheres via CNBr coupling. The Km values for the immobilized glucoamylase preparations (on the spacer arm‐attached microspheres) via CDI coupling 0.9% dextrin (w/v) and CNBr coupling 0.6% dextrin (w/v) were higher than that of the free enzyme 0.2% dextrin (w/v).The temperature profiles were broader for both immobilized preparations than that of the free enzyme. The operational inactivation rate constants (kiop) of immobilized enzymes were found to be 1.42 × 10?5 min?1 for CNBr coupled and 3.23 × 10?5 min?1 for CDI coupled glucoamylase. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2702–2710, 2001  相似文献   

12.
Novel aqueous polyurethane (PU) hybrid dispersions were successfully prepared with 5–15 mol % functionalized hexamethylene diisocynate trimer modified by N‐(n‐butyl)‐3‐aminopropyltriethoxysilane and dihydroxylpropyl‐terminated siloxane oligomers (TS). The results of the differential scanning calorimetry and X‐ray diffraction tests show that the degree of segment order was reduced by the introduction of TS. The hybrid polymer films with TS introduced into the PU backbone displayed excellent water and xylene resistance. Atomic force microscopy showed that the films had a smooth surface. It was noticeable that the tensile strength (σb) and Young's modulus of the films increased simultaneously when TS was incorporated into PU; σb of the PU15 film with 15 mol % TS was much higher than that of the neat PU0 film, and the breaking elongation of the film with 10 mol % TS was clearly higher than that of the other films. The results indicate that an appropriate content of TS significantly improved the properties of the aqueous PU hybrids. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Biodegradable and photocurable multiblock copolymers of various compositions were synthesized by the high‐temperature solution polycondensation of poly(ε‐caprolactone) (PCL) diols of molecular weight (Mn) = 3000 and poly(ethylene glycol)s (PEG) of Mn = 3000 with a dichloride of 5‐cinnamoyloxyisophthalic acid (ICA) as a chain extender, followed by irradiation by a 400 W high‐pressure mercury lamp (λ > 280 nm) to form a network structure. The gel contents increased with photocuring time, reaching a level of over 90% after 10 min for all copolymers without a photoinitiator. The thermal and mechanical properties of the photocured copolymers were examined by DSC and tensile tests. In cyclic thermomechanical tensile tests, the photocured ICA/PCL/PEG copolymer films showed good shape‐memory properties at 37–60°C, with both shape fixity ratio and shape recovery ratio over 90% at a maximum tensile strain of 100–300%. The water absorption of these copolymers and their rate of degradation in a phosphate buffer solution (pH 7.0) at 37°C increased significantly with increasing PEG content. The novel photocured ICA/PCL/PEG multiblock copolymers are potentially useful in biomedical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Gas–liquid chromatography is used to study the thermodynamic interactions between polystyrene and n‐alkanes (C6–C10). Polystyrene is used as a stationary phase with n‐alkanes as the probe molecules. Retention times and specific retention volumes are measured over the temperature interval of 60 to 170°C. Partial molar free energy of mixing, polymer–solvent interaction parameter, glass‐transition temperature, and solubility parameter of polystyrene at infinite dilution are calculated. Experimental results are discussed in terms of the theoretical calculations and size of the probe molecules. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1291–1298, 2001  相似文献   

15.
The thermal and mechanical properties of dental base materials cured by microwave and conventional heat methods were studied. The commercial dental base poly(methyl metacrylate) (PMMA) powder and liquid were mixed in a 3/1 ratio. They were polymerized by a peroxy catalyst at 65°C, then cured with a boiling water temperature and microwave radiation for periods of 5, 10, 15, 20, 25, 30, and 35 min for heat curing and 1, 2, 3, 5, and 7 min for microwave radiation. The microwave radiation outputs used were 500 and 700 W. The products of 5‐min heat curing and 1‐, 2‐, and 7‐min microwave curing were soluble in chloroform. All the others were partially soluble. The viscosity‐average molecular weights of the soluble samples were about 1 × 106. The thermal properties of the polymer samples were studied by differential scanning calorimetry (DSC). For the samples that were not cured completely, broad exothermic peaks at around 125°C were obtained in the DSC thermograms. The glass‐transition temperatures for completely cured samples were 110–120°C. The mechanical properties of the samples were determined from tensile and three‐point bending tests. The elastic modulus was highest for samples obtained by the conventional method with a 30‐min curing period. However, the bending modulus was highest for 7‐min cured samples in a 700‐W microwave. The mechanical strengths of the 700‐W output were higher than those at 500 W. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 251–256, 2003  相似文献   

16.
The thermal decomposition behavior and degradation kinetics of poly(N‐adamantyl‐exo‐nadimide) were investigated with thermogravimetric analysis under dynamic conditions at five different heating rates: 10, 15, 20, 25, and 30°C/min. The derivative thermogravimetry curves of poly(N‐adamantyl‐exo‐nadimide) showed that its thermal degradation process had one weight‐loss step. The apparent activation energy of poly(N‐adamantyl‐exo‐nadimide) was estimated to be about 214.4 kJ/mol with the Ozawa–Flynn–Wall method. The most likely decomposition process was an F1 deceleration type in terms of the Coats–Redfern and Phadnis–Deshpande results. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3003–3009, 2007  相似文献   

17.
EPDM rubber was surface‐ and bulk‐modified with varying concentrations of trimethylol propane triacrylate (TMPTA) in the presence of a constant electron‐beam irradiation dose of 100 kGy and over a wide range of irradiation doses from 0 to 200 kGy at a fixed TMPTA concentration (10%). The permeation rate and absorption of three homologous nonpolar solvents, namely, n‐hexane, n‐heptane, and n‐octane, along with an aromatic solvent, toluene, and a polar solvent, trichloroethylene, through unirradiated, unmodified control, and modified rubber membranes (≈150 μm) were studied. It was found that both the permeation rate and absorption decrease progressively with increase in the TMPTA concentration up to 10% for both the surface‐ and bulk‐modified rubbers. With increase in the radiation dose, there also is an initial drop in the values up to 50 kGy for the control and surface‐modified rubbers and up to about 100 kGy for the bulk‐modified one. The control rubber shows the highest absorption and permeation for all the solvents except trichloroethylene, followed by the bulk‐modified rubber membrane. Trichloroethylene is, however, absorbed and permeated most by the surface‐modified sample. The observations are explained in terms of the structural modifications of the rubber, crosslinking, changes in the relevant thermodynamic properties such as surface energy, the penetrant size, and the transport mechanism of the penetrants. The influence of temperature on the permeability characteristics of the control and modified rubbers was also studied. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 784–795, 2000  相似文献   

18.
Compound 5 a ,10 b ‐dihydrobenzofuro[2,3‐ b ]benzofuran‐2,9‐dicarbaldehyde ( II ) was prepared by two‐step reactions from p‐cresol and glyoxal. The bis(cyanoacetate) monomers ( III ) were prepared in a high yield by reacting ethyl cyanoacetate with the appropriate diol in the presence of tetra‐n‐butyl titanate. The polymers from II and III were synthesized by Knoevenagel polycondensation that was first carried out in anhydrous THF and followed by a solid‐state polycondensation, and main‐chain polymers with good glass transition temperatures in high yield were obtained. The polymerization of II and III afforded polymers IV , which exhibited good solubility in most organic solvents. The structure of all the monomers and polymers were characterized by conventional spectroscopic methods. The synthesized polymers contain acceptor groups (cyanide and carbonyl) and a donor group (benzodihydrofuran) in their main chain. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 505–511, 2001  相似文献   

19.
Ethylenediamine (EDA) covalently functionalized graphene sheets (GS‐EDA) and acidized carbon nanotubes (MWNTs‐COOH) were first prepared, followed by synthesizing l ‐aspartic acid functionalized GS‐EDA/MWNTs‐COOH (LGC) hybrid nanomaterials by using l ‐aspartic acid as a bridging agent. Then nanocomposites of high density polyethylene‐g ‐maleic anhydride (HDPE‐g ‐MAH) synergistic strengthening–toughening using LGC hybrids were prepared via melt compounding method. The surface structure of filler was characterized by using infrared (FTIR) and Raman spectrum. The synergistic strengthening–toughening effects of LGC hybrids on the HDPE‐g ‐MAH were investigated by scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), thermal gravimetric analysis (TGA), tensile, and impact tests. FTIR showed that EDA has been grafted on the graphene sheets, and ? COOH group has been introduced into MWNTs. The l ‐aspartic acid connected GS‐EDA and MWNTs‐COOH through chemical bonds. SEM observations showed that LGC hybrids were homogeneously dispersed in HDPE‐g ‐MAH nanocomposites. Tensile and impact tests indicated that the mechanical properties of nanocomposites were improved obviously when LGC hybrid nanomaterials were incorporated simultaneously. DMA analysis indicated that the storage modulus of composites was higher than that of pure HDPE‐g ‐MAH matrix. TGA results revealed that the maximum decomposition temperature of HDPE‐g ‐MAH composites containing 0.75 wt % of LGC showed 11.5 °C higher than that of HDPE‐g ‐MAH matrix. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45055.  相似文献   

20.
Understanding asphaltene nanoaggregation kinetics is a key to predicting the deposition in pure quartz‐grain porous media. High‐throughput quartz packed‐bed microreactors (μPBRs) were, therefore, designed to provide mechanistic insights by merging oilfield chemistry and microchemical systems. In‐line UV‐Vis spectroscopy and pressure transducer were used to characterize the stable packing of quartz particles with porosity of ~40% and permeability of ~5.5 × 10?13 m2. Temperature (25.0–90.0°C), n‐heptane composition (50.0–80.0 vol %), and n‐alkane (n‐C5 to n‐C9) were all observed to influence asphaltenes deposition in the porous media, and reduced dispersion was obtained in the damaged packed‐bed by estimating dispersion coefficients and the Bodenstein number. Deposition by mechanical entrapment dominated the mechanism in all scenarios, as discovered by the simplified Kozeny–Carman and Civan's permeability‐porosity relationships. The results could aid in the design of remediations that minimize production losses of considerable economic magnitude. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3534–3546, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号