首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用磁控溅射法,先在镀钼的钠钙玻璃衬底上共溅射Cu、Sn金属层后,然后在顶部溅射一层Zn S,制备出Cu_2ZnSnS_4(CZTS)薄膜的预制层。对预制层进行低温合金,然后以硫粉作为硫源在石英管中进行高温硫化,得到表面平整但晶粒较小的CZTS薄膜。通过X射线衍射仪(XRD)、扫描电镜(SEM)及能谱仪(EDS)分别对薄膜的晶体结构、表面形貌和薄膜组分进行分析表征;并用拉曼光谱表征了CZTS相的纯度。最后用所得到的CZTS薄膜制备了太阳电池,其开路电压:Voc=442 m V,短路电流密度:Jsc=5.08 m A/cm~2,光电转换效率达到0.62%。  相似文献   

2.
本文采用单周期和多周期磁控溅射ZnS-SnS-Cu制备CZST薄膜。通过X射线衍射仪(XRD)、拉曼光谱仪(Raman)、高倍光学显微镜、扫描电子显微镜(SEM)、能谱仪(EDS)和热探针对所制备的CZTS薄膜的晶体结构、拉曼位移、表面形貌、化学组分和导电类型进行研究分析。分析结果表明所制备CZTS薄膜的粘附性和结晶质量随着溅射周期的增加得到很大的改善所制备的CZTS无Cu_(2-x)S等其它二次相,且薄膜表面光滑、晶粒均匀致密、无孔洞。所制备的CZTS薄膜在化学组分是贫铜富锌(Cu/Zn+Sn≈0.88,Zn/Sn≈1.09),符合高效率太阳能电池吸收层的要求。  相似文献   

3.
采用共溅射及分步溅射方法在涂钼的钠钙玻璃衬底上分别形成金属预制层,先后在低温及高温下对金属预制层进行合金后硫化,制备了铜锌锡硫(Cu_2Zn SnS_4,CZTS)薄膜。研究了薄膜的晶体结构、表面和截面形貌、元素组分、薄膜中的相纯度及元素的化学状态。结果表明:共溅射预制层得到的CZTS薄膜的表面及截面形貌优于分步溅射预制层得到的CZTS薄膜。用紫外-可见分光光度计与Hall测试系统表征了CZTS薄膜的光电特性,发现在200℃退火15 h能有效降低CZTS薄膜的缺陷态密度,增加CZTS薄膜中的载流子迁移率和扩散系数。研究结果表明,采用共溅射制备CZTS薄膜太阳电池性能优于分步溅射法,且经过退火处理的CZTS薄膜制备的电池特性均得到有效提高。基于分步溅射法制备的CZTS吸收层制备的电池开路电压为722 m V,短路电流密度为11.2 mA/cm~2,最高转换效率为3.22%;基于共溅射法制备的CZTS吸收层制备的电池开路电压为637 m V,短路电流密为15.0 mA/cm~2,最高转换效率为3.88%。  相似文献   

4.
采用两电极的电化学沉积方在钼衬底上制备了Cu_2ZnSnS_4(CZTS)薄膜。将Cu、Zn、Sn三种金属元素按一定的顺序分步沉积在钼片上得到CZT薄膜前驱体把预制层放置在S的气氛中并在N_2的保护下退火硫化得到CZTS薄膜。通过SEM、EDS、XRD分析了CZTS薄膜的表面形貌、元素组分、结晶情况,并用拉曼光谱进一步确定了薄膜的晶体成分。最后将CZTS薄膜经过后步工艺制作成CZTS薄膜太阳电池,并通过Ⅰ-Ⅴ测试得到了该电池的效率及其它相应参数。  相似文献   

5.
以CH3CH2OH为溶剂,CuCl和InCl3为反应物,H2S为硫源,用离子层气相反应法制备了CuInS2半导体薄膜.用X射线衍射、X射线光电子谱、扫描电镜和紫外-可见光谱等对薄膜的晶型、表面化学组成、表面形貌及光电性能进行了表征.分析了混合前驱体溶液中阳离子浓度比[Cu]/[In]对薄膜化学计量及性能的影响.[Cu]/[In]≥1.25时,可获得黄铜矿结构的CuInS2薄膜,其单相形成区外[Cu]/[In]为1.45~1.65.  相似文献   

6.
纳米二氧化钛薄膜光催化剂的合成及特性   总被引:13,自引:0,他引:13  
研究采用溶胶-凝胶技术以载玻片为基质制备了纳米TiO2薄膜,向溶胶中添加乙酰丙酮后改善了溶胶的稳定性及薄膜的牢固性。用扫描探针显微镜(DFM)、X射线衍射(XRD)、红外光谱(IR)及X射线光电子能谱(XPS)对薄膜进行了表征。结果表明:扫描探针显微镜(DFM)观察到薄膜中颗粒的粒径为20~40nm,X射线衍射(XRD)表明TiO2为锐钛型,用红外光谱(IR)表征了溶胶及粉末样品的物性并探讨了反应的机理,X射线光电子能谱(XPS)结果显示薄膜中除含有Ti、O元素外,还有少量从玻璃表面扩散至薄膜中的Na和Si元素。TiO2薄膜对光降解甲基橙水溶液具有很好的光催化性,通过掺SnO2、酸处理途径明显提高了其性能。  相似文献   

7.
采用溶胶 -凝胶法在医用NiTi形状记忆合金表面制备了TiO2 与TiO2 -SiO2 薄膜 .用X射线 (XRD) ,红外光谱 (FT -IR) ,X射线光电子能谱 (XPS)和原子力显微镜 (AFM)对薄膜的表面组成、结构与形貌进行了研究 .将表面涂有薄膜的试样浸入模拟体液 (SBF) ,用XPS分析Ca ,P在薄膜表面的沉积情况 .结果表明 :TiO2 -SiO2 膜具有比TiO2 膜更高的生物活性 ,主要原因是TiO2 -SiO2 薄膜表面存在较多的羟基基团 ,在模拟体液中诱导磷灰石沉积的能力较高 ;此外 ,薄膜的表面形貌对其生物活性也有一定的影响  相似文献   

8.
采用ZDL-2051型真空镀膜机,用真空蒸发沉积方法制备环保材料TiO2薄膜,并用扫描电子显微镜(SEM)和X射线能量色散谱仪对其表面形貌及成分分别进行了观察、分析和表征.结果表明,薄膜表面均匀、致密、无裂痕.研究了TiO2薄膜的制备和生产工艺.  相似文献   

9.
晶体质量是决定铜锌锡硫硒(Cu2ZnSn(S,Se)4, CZTSSe)吸收层薄膜吸收效率的关键,旋涂是溶液法制备CZTSSe吸收层的第一步,因此旋涂方式的选择至关重要。为了探究不同旋涂方式对CZTSSe吸收层薄膜质量和相应器件性能的影响,分别采用三组不同的旋涂方式制备铜锌锡硫(Cu2ZnSnS4, CZTS)前驱体薄膜及CZTSSe吸收层薄膜,并利用X射线衍射仪(XRD)、能谱仪(EDS)、显微拉曼光谱仪(Raman)、场发射扫描电子显微镜(FE-SEM)分析了不同旋涂方式对所制备的CZTSSe吸收层薄膜晶体结构、元素成分、相纯度、表面形貌的影响。同时,采用电流密度-电压(J-V)测试和外量子效率(EQE)测试对CZTSSe吸收层薄膜太阳电池的光电特性进行了表征。结果表明:旋涂7周期,且第一周期烘烤之前旋涂2次的效果最好,所制备的CZTS前驱体薄膜均匀,无裂纹,CZTSSe吸收层薄膜结晶度更高,薄膜表面更平整致密,晶粒大小更均匀,实现了9.63%的光电转换效率。通过对采用不同旋涂方式制备的器件的性能参数进行统计分析,得出新的旋涂方式可以提高CZTSSe薄膜太阳电池的可重复性,为将来可能的大规模商业化应用做铺垫。  相似文献   

10.
程晓农  宋娟  严学华 《硅酸盐学报》2007,35(11):1514-1519
在单晶硅基片上用磁控溅射法制备ZrW2O8/Cu梯度薄膜.用X射线衍射分析薄膜的物相组成,用原子力显微镜和扫描电镜对薄膜的表面形貌进行观察和分析,利用X射线光电子能谱技术对薄膜中各元素沿深度的分布情况进行检测.结果表明:溅射所得薄膜为非晶态钨酸锆与氧化铜的复合薄膜,快速热处理和氢气还原后得到立方相钨酸锆与铜的复合薄膜,在760 ℃下热处理钨酸锆的结晶度最好,而在740 ℃热处理的薄膜质量最佳,薄膜中各成分沿厚度方向呈梯度分布.  相似文献   

11.
The Cu2ZnSnS4 (CZTS) thin films have been electrodeposited onto the Mo coated and ITO glass substrates, in potentiostatic mode at room temperature. The deposition mechanism of the CZTS thin film has been studied using electrochemical techniques like cyclic voltammetery. For the synthesis of these CZTS films, tri-sodium citrate and tartaric acid were used as complexing agents in precursor solution. The structural, morphological, compositional, and optical properties of the CZTS thin films have been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), EDAX and optical absorption techniques respectively. These properties are found to be strongly dependent on the post-annealing treatment. The polycrystalline CZTS thin films with kieserite crystal structure have been obtained after annealing as-deposited thin films at 550 in Ar atmosphere for 1 h. The electrosynthesized CZTS film exhibits a quite smooth, uniform and dense topography. EDAX study reveals that the deposited thin films are nearly stoichiometric. The direct band gap energy for the CZTS thin films is found to be about 1.50 eV. The photoelectrochemical (PEC) characterization showed that the annealed CZTS thin films are photoactive.  相似文献   

12.
In this study, Cu2ZnSnS4 (CZTS) thin films were fabricated by periodically sequential depositions of metallic precursors by magnetron sputtering followed by sulfurization. The element compositions, crystal structures, and surface morphologies of the single-period precursor (Zn/Sn/Cu) and four-period precursor (Zn/Sn/Cu/Zn/Sn/Cu/Zn/Sn/Cu/Zn/Sn/Cu) during the sulfurization process were investigated. The experimental results showed that in the initial stage of sulfurization, the single-period precursor had a more efficient reaction with sulfur vapor below 300?°C because of its thicker metal layers. During the process of sulfurization, the CZTS phase first formed in the four-period film at 400?°C, owing to the wide distribution of the internal layer in the periodic thin film. With a further increase in temperature, the crystallinity of CZTS was enhanced and the secondary phases were reduced. A CZTS phase with Cu-poor and Zn-rich composition was confirmed in both thin films after complete sulfurization. The CZTS thin film with a four-period precursor showed a better degree of crystallization, and a single phase of CZTS was obtained more easily than in the single-period thin film. Therefore, using a periodic structure can promote the sulfurization reaction of Cu-Zn-Sn precursors and enhance the properties of CZTS thin films.  相似文献   

13.
A promising modified SILAR sequence approach has been employed for the synthesis of photoelectrochemically active Cu2ZnSnS4 (CZTS) thin films. To study the influence of sulfurization temperatures on the CZTS thin films, the CZTS precursor thin films were annealed at temperatures of 520, 540, 560, and 580 °C for 1 h in an H2S (5 %)+Ar (95 %) atmosphere. These films were characterized for their structural, morphological, and optical properties using X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy, and UV-vis spectrophotometer techniques. The film sulfurized at an optimized temperature of 580 °C shows the formation of a prominent CZTS phase with a dense microstructure and optical band gap energy of 1.38 eV. The photoelectrochemical (PEC) device fabricated using optimized CZTS thin films sulfurized at 580 °C exhibits an open circuit voltage (Voc) of 0.38 V and a short circuit current density (Jsc) of 6.49 mA cm−2, with a power conversion efficiency (η) of 0.96 %.  相似文献   

14.
铜锌锡硫(CZTS)具有资源丰富、环境友好、理论光电转换效率高等优点,是理想的薄膜太阳能电池光吸收材料。介绍了CZTS晶体结构和光电转换性能。综述了溶胶-凝胶前驱体法、溶剂(水)热法、热注入法、电沉积法、溶液法等溶液化学方法在CZTS材料制备及其薄膜太阳能电池的研究进展,讨论了目前存在的问题,并指出今后的研究方向。  相似文献   

15.
Recently, great attention has been paid to the development of earth rich and nonhazardous Copper Zinc Tin Sulfide (CZTS–Cu2ZnSnS4) thin films for application in photovoltaic devices owing to its high absorption coefficient over the visible and infrared region. However, sulfurization process is an indispensable step in growing stoichiometric thin film using conventional physical vapor deposition. Hence, it is imperative to devise a liquid based technique without intentional sulfurization for the optimum quality growth of CZTS thin films. In the current work, layer-by-layer sol-gel deposition technique was utilized to grow high quality CZTS thin films without sulfurization and their structural and optical characteristics were investigated using XRD studies and UV-visible spectroscopy respectively. The morphology and chemical composition of the prepared CZTS films are estimated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis respectively. Highly absorbing and crystalline CZTS films have been successfully grown in the present work which could be further utilized as an absorber layer in photovoltaic applications.  相似文献   

16.
Structural, electrical and optical properties of Cu and Ag nanoparticles thin films deposited on glass substrates prepared by sputtering were investigated. Cold cathode ion source used for sputtered of copper and silver targets to deposit nanoparticles thin films on glass substrate using argon gas. X-ray diffraction was used to study the structure and the grain size of thin film which reveals that average grain size is in nano region. Copper nanoparticles was in rang 14 nm and silver nanoparticles size was 20 nm in first peak using Scherrer’s method. The electrical resistivities of copper and silver thin films were also investigated. The thin film resistance Rs of Cu and Ag equals 1.33 and 6.35 Ω respectively. I-V characteristics of thin films were recorded at room temperature and are found to be linear. Optical properties of the synthesized materials are studied by UV–Vis in the wavelength range 200–800 nm. The calculated band gap for the Cu thin film on glass are estimated to be EgCu = 2.18 eV.  相似文献   

17.
The influence of sulphur vapour pressure, controlled by its mass, on the grain growth and optoelectronic properties of Cu2ZnSnS4 (CZTS) films prepared by a two-step procedure based on sputtering was studied. It was found that both the crystallinity and grain size of the films were promoted with the increase of the sulphur vapour pressure, indicating that the crystal growth was controlled by the sulphur vapour pressure. In addition, the crystal growth process of CZTS was investigated by analysing the microstructure and elemental composition of the sulfurized films with different masses of sulphur. It was also found that the content of Sn in the sulfurized films decreased after high-temperature annealing. However, the second phase SnS2 was observed on the sample surface, which led to the increase of the optical band gap of the film. Moreover, we proposed the regulatory mechanism of sulphur vapour pressure in the grain growth of CZTS film. Finally, a highly crystalline p-type kieserite Cu2ZnSnS4 film with carrier concentration of 8.16?×?1017 cm?3, mobility of 1.24?cm2/V?s and optical bandgap of 1.54?eV was obtained. This CZTS layers are expected to fabricate high efficiency thin film solar cells.  相似文献   

18.
《Ceramics International》2020,46(1):218-226
In this study, the effects of various metal substrates on the interface properties of Cu2ZnSnS4 (CZTS)/metal structures were investigated. The crystal phases, morphologies, and element distributions at the interfaces between CZTS thin films and various metal substrates (Mo, W, Ti, and Al foils) were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and secondary ion mass spectroscopy. MoS2 and WS2 phases were formed at the CZTS/Mo and CZTS/W interfaces, respectively. No Ti-S and Al-S compounds were formed at the CZTS/Ti and CZTS/Al interfaces. The formation of these phases was dependent on the lowest reaction temperature between the metal foil and S vapor. The size of particles at the back surface of the CZTS thin film on the Ti substrate was larger than that on the other substrates, because the Ti element improved the crystallinity of CZTS. The presence of a thick WS2 layer at the CZTS/W interface was attributed to the fact that the (211) plane of the W foil caused exposure of a greater number of W atoms in the sulfurization process because of the body-centered cubic crystal structure of W. The diffusion of Ti atoms into the CZTS thin film was due to the large average hop distance of defects in the CZTS thin film and the relatively low activation energy of Ti atoms. Current–voltage curves and energy band diagrams revealed that the ohmic contacts formed at the CZTS/Mo and CZTS/Ti interfaces were better than those formed at the CZTS/W interface and that a Schottky contact was formed at the CZTS/Al interface.  相似文献   

19.
Aytug Ava  Canan  Ocak  Yusuf Selim  Celik  Omer  Asubay  Sezai 《SILICON》2023,15(1):451-458
Silicon - The influence of the Si substitution ratio on the structural, morphological, and optical properties of Cu2ZnSnS4 (CZTS) thin films was examined. The Cu2Zn(SixSn1–x)S4 thin films...  相似文献   

20.
In the present investigation, polycrystalline n-CdTe films have been synthesized on SnO2-coated glass substrate employing voltammetric technique under periodic cycles. Optical properties of the CdTe films were investigated and the band gap energy was found to lie within the range of 1.32-1.40 eV depending on the composition of the film matrix, as obtained by EDAX analysis. The films were subjected to SEM and AFM analyses in order to study the surface morphology, topographic structure of the semiconductor surface. X-ray diffraction studies indicated polycrystalline nature of deposits containing hexagonal and cubic phases of CdTe. The stability of the films was determined through anodic polarization studies using Tafel analysis. The amount of Cd2+ dissolved during polarization was estimated by anodic stripping voltammetry. The Nyquist and Mott-Schottky plots derived from impedance spectroscopic measurements provided important information regarding electrical and semiconducting properties of the films. Cyclic voltammetry was found to be an effective method for developing potential thin films of CdTe, demonstrating photo-conversion efficiency up to the order of ∼4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号