首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
为评价新型高氮化合物3,5-二硝氨基-1,2,4-三唑肼盐(HDNAT)作为固体推进剂组分的应用潜力,采用NASA-CEA软件,在标准条件下(pc∶p0=70∶1),计算了含HDNAT的丁羟推进剂(HTPB)、聚叠氮缩水甘油醚(GAP)推进剂和改性双基推进剂(CMDB)的能量特性。绘制了HTPB/Al/AP/HDNAT推进剂(金属Al的最大质量分数为20%)的标准理论比冲Isp、特征速度C*、燃烧温度Tc、燃气平均相对分子质量Mw的等性能三角图。结果表明,HDNAT单元推进剂的比冲为2 533.0N·s/kg;在HTPB推进剂中,当HDNAT质量分数为50%时,Isp最大为2 658.0N·s/kg,较基础配方提高了326.6N·s/kg;在GAP推进剂中,当HDNAT质量分数为30%时,Isp最大为2 529.0N·s/kg,较基础配方提高了252.7N·s/kg;在CMDB推进剂中,当HDNAT质量分数为27%时,Isp最大为2 593.1N·s/kg,较基础配方提高了57.3N·s/kg。  相似文献   

2.
低铝粉含量的HMX/HTPB推进剂研究   总被引:1,自引:0,他引:1  
对低铝粉含量的HMX/HTPB推进剂进行了配方研究。为获得少烟、高密度、高模量、高燃速、低压强指数的优良的综合性能,配方调试以铝粉质量分数<10%,用HMX替代部分AP来达到少烟目的;以HTPB/TDI/MAPO/STR黏合剂体系来获取高模量;通过AP级配调节,燃速催化剂的选择等方法,使推进剂具有不挥发物质量分数≥88.5%、20℃下密度≥1.78 g/cm3、σm≥3.1 MPa,燃速≥40 mm/s的良好性能,并具有药浆初始黏度低,流动、流平性好的优点。HTPB/AP/Al/HMX四组元推进剂经BSFΦ127标准发动机地面试车,内弹道p–t曲线在压强30 MPa以下,燃烧稳定;推进剂燃烧未急升导致压强异常现象。研制成的药柱经发动机地面试验可知混合比冲高达2 456.7 N·s/kg。  相似文献   

3.
利用国军标方法及CAD系统软件,在标准条件(pc∶p0=70∶1)下,计算了含1,1-二氨基-2,2-二硝基乙烯(FOX-7)的各类推进剂的能量特性参数,分析了氧化剂(AP、RDX、CL-20)及黏合剂(HTPB、PET、GAP、PBAMO)等成分对FOX-7推进剂能量特性的影响。结果表明,将AP加入HTPB/FOX-7推进剂配方中取代FOX-7可有效改善氧条件,有利于推进剂能量的提高。在黏合剂含量较低(质量分数<8%)的推进剂体系中,使用惰性黏合剂有利于提高推进剂的能量;而在黏合剂含量较高(质量分数>10%)的推进剂体系中,使用含能黏合剂提高推进剂能量的幅度优于惰性黏合剂,且GAP优于PBAMO。用FOX-7取代NEPE推进剂中的AP,推进剂最大理论比冲可达2 567 N.s/kg。由GAP/FOX-7/RDX组成的无烟推进剂,在很宽的范围内都可以达到2 400 N.s/kg以上的理论比冲值。  相似文献   

4.
以氨基-1,2,4-三唑和2-偕二硝甲基-5-硝基四唑(HDNMNT)为原料,通过中和反应合成出两种新型含能离子盐——2-偕二硝甲基-5-硝基四唑3-氨基-1,2,4-三唑盐(3-ATDNMNT)和2-偕二硝甲基-5-硝基四唑4-氨基-1,2,4-三唑盐(4-ATDNMNT),收率分别为95.4%和96.7%;利用FT-IR、1 H NMR、13C NMR、15 N NMR及元素分析等方法对其结构进行表征;采用量子化学方法计算了3-ATDNMNT和4-ATDNMNT的爆轰性能;在标准状态下(膨胀比为70∶1),利用最小自由能原理,分别计算了两种离子盐在丁羟复合推进剂中的能量性能。结果表明,3-ATDNMNT的爆速和爆压分别为8.587km/s和33.58GPa,4-ATDNMNT的爆速和爆压分别为8.693km/s和34.31GPa。以3-ATDNMNT部分取代丁羟复合推进剂中的AP后,丁羟复合推进剂的理论比冲可达2 635.7N·s/kg。以4-ATDNMNT部分取代丁羟复合推进剂中的AP后,当HTPB、Al、AP及4-ATDNMNT各组分质量分数分别为10%、5%、15%及70%时,获得该丁羟复合推进剂的最高理论比冲为2 677.2N·s/kg。  相似文献   

5.
提高含硼富燃料推进剂能量的技术途径   总被引:2,自引:1,他引:2  
为提高含硼推进剂的能量,在确定基础配方的情况下,采用热力学计算软件,计算了含硼富燃料推进剂的理论能量,讨论了提高含硼富燃料推进剂能量的技术途径。计算结果表明,当推进剂中其他组分含量一定时,增加硼含量、减少AP含量或以HTPB代替BAM O/THF黏合剂,可提高含硼富燃料推进剂的比冲。发动机试验结果表明,在配方中添加质量分数5%~8%的镁粉,推进剂的一次喷射效率大于98%,细粒度硼粉和F类化合物可以提高该推进剂的比冲,而添加F 3化合物可将比冲提高到9 502N.s.kg-1。  相似文献   

6.
考察了 HMX/AP/HTPB 推进剂及其组分的热分解特性,当混合氧化剂HMX 和 AP 之质量比为1:1时,其热分解曲线呈现出独特的单峰放热分解特征。考察了十种添加剂对 HMX、AP、HMX/AP 和 HMX/AP/HTPB 热分解性能影响以及对 HMX/AP/Al/HTPB 推进剂燃速的影响。提出了改进的 BDP 模型和燃速模拟计算。  相似文献   

7.
为考察新型含能化合物二硝基胍(DNGu)对固体推进剂能量性能的影响,采用能星5.0版程序,模拟计算了DNGu替换CMDB(复合改性双基)、HTPB(端羟基聚丁二烯)推进剂中的AP(高氯酸铵),替换NEPE(硝酸酯增塑剂聚醚)、GAP(聚叠氮缩水甘油醚)推进剂中的主氧化剂AP和次级氧化剂HMX(环四亚甲基四硝胺)后体系的能量效果。结果显示:DNGu单质推进剂平衡流比冲比ADN(二硝酰胺铵)、AP要高得多;DNGu对4种推进剂配方体系能量贡献均优于AP,如果设计合适的配方体系,DNGu对CMDB推进剂能量贡献超越ADN;DNGu作为GAP推进剂中主氧化剂时,能量水平高于AP,作为次级氧化剂时,能量水平低于HMX;DNGu作为NEPE推进剂主氧化剂时,理论比冲存在最大值,替换HMX作为次级氧化剂时,理论比冲降低。  相似文献   

8.
采用X射线单晶衍射表征了新型18-冠-6/二硝酰胺铵含能共晶(18-Crown-6/ADN)氧化剂晶体的结构;采用氧弹式量热计测定了其燃烧热并获得其标准摩尔生成焓(Δ_fH_m~θ);采用最小自由能法计算了18-Crown-6/ADN对3,3-二叠氮甲基氧丁环与四氢呋喃共聚醚(BAMO-THF)推进剂能量性能的影响。结果表明,18-Crown-6/ADN晶体属于单斜晶系,C2/c空间群,晶胞参数:a=2.393 5nm、b=0.863 27nm、c=2.032 4nm;α=90°、β=112.874°、γ=90°;18-Crown-6/AND的Δ_fH_m~θ为-(833.57±4.89)kJ/mol,其取代配方中的AP、HMX、ADN或CL-20后推进剂的理论比冲(I_(sp))最低;含18-Crown-6/ADN的BAMO-THF推进剂中加入部分高能组分(如CL-20、HMX)可提高其能量性能;能量计算表明,BAMO-THF/A3、Al、AP、(18-Crown-6/ADN)/CL-20/HMX的质量分数分别为25%、18%、15%、42%,18-Crown-6/ADN、CL-20和HMX的质量比约3∶4∶3时,配方的I_(sp)约2 550N·s/kg,燃烧室温度约2 900K,燃气平均相对分子质量约24.50,特征速度约1 540m/s。  相似文献   

9.
对少烟HTPB/AP/RDX/A1推进剂能量性能进行了理论计算,通过BSFφ165和φ315试验发动机试验,考察了试验发动机类型,工作压力对经冲效率的影响,而且与高铅含量HTPB/AP/RDX/A1推进剂的比冲效率进行了比较,结果表明,铅含量对推进剂的比冲效率有显著的影响,低铝配方的比冲效率比高铝配方的比冲效率相对要高些;对于推进剂组分确定的配方,合适选择发动机的工作压力,可以不同程度地提高比冲效率,对于同一类型推进剂配方,通过计算理论比冲,结合比冲效率水平,可以对实际比冲进行有效的预估。  相似文献   

10.
含RDX低燃速丁羟推进剂的配方研究   总被引:1,自引:0,他引:1  
为满足某发动机装药需求,设计了固体质量分数为87.5%含RDX的低燃速丁羟推进剂配方,采用最小自由能法进行理论计算,研究了RDX和改性草酸铵对热力学参数的影响.用BSFΦ165标准试验发动机测试了比冲和燃速.结果表明,含RDX低燃速推进剂配方中,RDX和改性草酸铵的含量影响其热力学参数.当RDX质量分数为(10.0%),改性草酸铵为2.0%时,低燃速推进剂的实测比冲为2 374 N·s·kg~(-1),比冲效率为0.919,燃速为4.12 mm·s~(-1);通过添加少量改性草酸铵、改变氧化剂的粒度级配,能够在保证推进剂能量基本不变的前提下,满足含RDX低燃速丁羟推进剂配方的低燃速指标要求.  相似文献   

11.
Nitramines are known to produce lower burning rates and higher pressure exponent (η) values. Studies on the burning rate and combustion behavior of advanced high‐energy NG/PE‐PCP/HMX/AP/Al based solid propellant processed by slurry cast route were carried out using varying percentages of HMX and AP. It was observed that propellant compositions containing only AP and Al loaded (total solids 75 %) in NG plasticized PE‐PCP binder produce comparatively lower pressure exponent (η) values similar to AP‐Al filled HTPB based composite propellants. However, energetic propellants containing high level of nitramine (40–60 %) produce high pressure exponent (0.8–0.9) values in the same pressure range. Incorporation of fine particle size AP (ca. 6 μm) and change in its concentration in the propellant composition reduces η value marginally and influences the burning rate. However, such compositions have higher friction sensitivity.  相似文献   

12.
采用最小自由能法,研究了含呋咱衍生物的Al/Mg/HTPB/AP富燃料推进剂的能量性能,结果表明,随着呋咱衍生物含量的增加,富燃料推进剂比冲明显增加,其中含质量分数为25%的DAAzF(4,4'-二氨基-3,3'-偶氮呋咱)的富燃料推进剂比冲可达7 522.9 N·s·kg-1,比相同质量含量下含CL-20富燃料推进剂比冲高260N·s·kg-1.含呋咱衍生物富燃料推进剂气相平均相对分子质量((-M)g)约为29,补燃室火焰温度(Tc)约为2 200K,且二者随着呋咱衍生物含量增加而略有增加.  相似文献   

13.
储氢合金/AP/HTPB推进剂的热分解性能   总被引:2,自引:0,他引:2  
采用TG-DTG、DSC以及动力学分析方法研究了储氢合金/AP/HTPB推进剂的热分解性能。结果表明,相对于Al/AP/HTPB推进剂,储氢合金/AP/HTPB推进剂的热分解温度降低,放热量提高;A20/AP/HTPB推进剂的凝聚相反应程度提高2.44%,第二、三温区的热分解活化能(Kissinger法)分别降低4.06%和22.63%;A30/AP/HTPB推进剂的凝聚相反应程度提高10.61%,第二、三温区的热分解活化能(Kissinger法)分别降低30.89%和38.87%。储氢合金对AP/HTPB推进剂的热分解有催化作用,并且该催化作用随着储氢合金中Mg0.45Ni0.05B0.5Hx含量的增加而增强。  相似文献   

14.
为了对RDX/Al/AP/HTPB炸药的有效成分进行分离回收,研究了以超声空化-表面活性剂水溶法提取RDX/Al/AP/HTPB炸药中高氯酸铵(AP)的分离工艺,探讨了各工艺参数对AP提取率的影响。结果表明,表面活性剂浓度、提取时间和超声频率是影响AP提取率的主要因素,表面活性剂种类为次要因素,料液质量比和提取次数对AP提取率的影响很小。最佳工艺条件为:室温,提取时间40min,料液质量比1∶3,提取次数1次,超声功率3.0kW,表面活性剂为吐温80(质量分数2.0%)。  相似文献   

15.
Composite propellants based on the solid nitrate ester 2,3‐hydroxymethyl‐2,3‐dinitro‐1,4‐butanediol tetranitrate (SMX) were theoretically and experimentally examined and compared to formulations based on ammonium perchlorate (AP). Thermochemical equilibrium calculations show that aluminized SMX‐based formulations can achieve theoretical sea level specific impulse values upwards of 260 s. Both ignition sensitivity (tested via drop weight impact, electrostatic discharge, and BAM friction) and physical properties (hardness and thermal properties) are comparable to those of the AP‐based formulations. However, the SMX‐based formulation could be detonated using a high explosive donor charge in contact with the propellant. Differential scanning calorimetry of the SMX‐based propellant indicated an exotherm onset of 140 °C, which corresponds to the known decomposition temperature of SMX. The propellant has a high burning rate of 1.57 cm s−1 at 6.89 MPa, with a pressure exponent of 0.85. This high pressure sensitivity might be addressed using various energetic and/or stabilizing additives. With good performance and high density, SMX‐based composite propellants may offer a promising perchlorate‐free alternative to existing AP‐based formulations.  相似文献   

16.
采用静态与水下声发射法测试了CL-20含量及其粒度级配对NEPE推进剂燃速与压强指数的影响;采用DSC与TG-IR联用研究了CL-20对NEPE推进剂热分解行为的影响。结果表明,随着CL-20质量分数由42%增至50%,推进剂燃速与压强指数上升,燃烧效率提高,表明CL-20氧化能力高于GAP/硝酸酯含能黏合剂体系;随着CL-20/HMX、CL-20/Al质量比增高,推进剂燃速上升,燃烧效率上升;CL-20对推进剂燃速和压强指数的贡献高于HMX;随着CL-20/AP质量比增高,CL-20/AP混合体系分解产物氧化能力降低,燃烧反应速率降低,燃速降低;CL-20粒度级配对NEPE推进剂燃烧行为影响显著,当CL-20的粒径(d50)在5~50μm时,随着细粒度CL-20含量增高,推进剂燃速与燃速压强指数下降;当体系中存在超细粒度CL-20(d50=500nm)时,推进剂燃速与燃速压强指数随着超细粒度CL-20含量的增加而有所增加,4种粒度CL-20对NEPE推进剂燃速的贡献顺序为:粗粒度>中粒度>超细粒度>细粒度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号