首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Extracellular vesicles (EVs) have been identified as key messengers of intracellular communication in health and disease, including the lung. EVs that can be found in bronchoalveolar lavage fluid (BALF) are released by multiple cells of the airways including bronchial epithelial cells, endothelial cells, alveolar macrophages, and other immune cells, and they have been shown to mediate proinflammatory signals in many inflammatory lung diseases. They transfer complex molecular cargo, including proteins, cytokines, lipids, and nucleic acids such as microRNA, between structural cells such as pulmonary epithelial cells and innate immune cells such as alveolar macrophages, shaping mutually their functions and affecting the alveolar microenvironment homeostasis. Here, we discuss this distinct molecular cargo of BALF-EVs in the context of inducing and propagating inflammatory responses in particular acute and chronic lung disorders. We present different identified cellular interactions in the inflammatory lung via EVs and their role in lung pathogenesis. We also summarize the latest studies on the potential use of BALF-EVs as diagnostic and prognostic biomarkers of lung diseases, especially of lung cancer.  相似文献   

2.
3.
Alveolar type II (ATII) cells are a key structure of the distal lung epithelium, where they exert their innate immune response and serve as progenitors of alveolar type I (ATI) cells, contributing to alveolar epithelial repair and regeneration. In the healthy lung, ATII cells coordinate the host defense mechanisms, not only generating a restrictive alveolar epithelial barrier, but also orchestrating host defense mechanisms and secreting surfactant proteins, which are important in lung protection against pathogen exposure. Moreover, surfactant proteins help to maintain homeostasis in the distal lung and reduce surface tension at the pulmonary air–liquid interface, thereby preventing atelectasis and reducing the work of breathing. ATII cells may also contribute to the fibroproliferative reaction by secreting growth factors and proinflammatory molecules after damage. Indeed, various acute and chronic diseases are associated with intensive inflammation. These include oedema, acute respiratory distress syndrome, fibrosis and numerous interstitial lung diseases, and are characterized by hyperplastic ATII cells which are considered an essential part of the epithelialization process and, consequently, wound healing. The aim of this review is that of revising the physiologic and pathologic role ATII cells play in pulmonary diseases, as, despite what has been learnt in the last few decades of research, the origin, phenotypic regulation and crosstalk of these cells still remain, in part, a mystery.  相似文献   

4.
With cardiovascular diseases affecting millions of patients, new treatment strategies are urgently needed. The use of stem cell based approaches has been investigated during the last decades and promising effects have been achieved. However, the beneficial effect of stem cells has been found to being partly due to paracrine functions by alterations of their microenvironment and so an interesting field of research, the “stem- less” approaches has emerged over the last years using or altering the microenvironment, for example, via deletion of senescent cells, application of micro RNAs or by modifying the cellular energy metabolism via targeting mitochondria. Using autologous muscle-derived mitochondria for transplantations into the affected tissues has resulted in promising reports of improvements of cardiac functions in vitro and in vivo. However, since the targeted treatment group represents mainly elderly or otherwise sick patients, it is unclear whether and to what extent autologous mitochondria would exert their beneficial effects in these cases. Stem cells might represent better sources for mitochondria and could enhance the effect of mitochondrial transplantations. Therefore in this review we aim to provide an overview on aging effects of stem cells and mitochondria which might be important for mitochondrial transplantation and to give an overview on the current state in this field together with considerations worthwhile for further investigations.  相似文献   

5.
Epidemiological evidence shows that smoking causes a thrombophilic milieu that may play a role in the pathophysiology of chronic obstructive pulmonary disease (COPD) as well as pulmonary thromboembolism. The increased nicotine level induces a prothrombotic status and abnormal blood coagulation in smokers. Since several anticoagulants increase bleeding risk, alternative therapies need to be identified to protect against thrombosis without affecting hemostasis. Astragalin is a flavonoid present in persimmon leaves and green tea seeds and exhibits diverse activities of antioxidant and anti-inflammation. The current study investigated that astragalin attenuated smoking-induced pulmonary thrombosis and alveolar inflammation. In addition, it was explored that molecular links between thrombosis and inflammation entailed protease-activated receptor (PAR) activation and oxidative stress-responsive mitogen-activated protein kinase (MAPK)-signaling. BALB/c mice were orally administrated with 10–20 mg/kg astragalin and exposed to cigarette smoke for 8 weeks. For the in vitro study, 10 U/mL thrombin was added to alveolar epithelial A549 cells in the presence of 1–20 µM astragalin. The cigarette smoking-induced the expression of PAR-1 and PAR-2 in lung tissues, which was attenuated by the administration of ≥10 mg/kg astragalin. The oral supplementation of ≥10 mg/kg astragalin to cigarette smoke-challenged mice attenuated the protein induction of urokinase plasminogen activator, plasminogen activator inhibitor-1and tissue factor, and instead enhanced the induction of tissue plasminogen activator in lung tissues. The astragalin treatment alleviated cigarette smoke-induced lung emphysema and pulmonary thrombosis. Astragalin caused lymphocytosis and neutrophilia in bronchoalveolar lavage fluid due to cigarette smoke but curtailed infiltration of neutrophils and macrophages in airways. Furthermore, this compound retarded thrombin-induced activation of PAR proteins and expression of inflammatory mediators in alveolar cells. Treating astragalin interrupted PAR proteins-activated reactive oxygen species production and MAPK signaling leading to alveolar inflammation. Accordingly, astragalin may interrupt the smoking-induced oxidative stress–MAPK signaling–inflammation axis via disconnection between alveolar PAR activation and pulmonary thromboembolism.  相似文献   

6.
Due to the rapid development of the nanotechnology industry in the last decade, nanoparticles (NPs) are omnipresent in our everyday life today. Many nanomaterials have been engineered for medical purposes. These purposes include therapy for pulmonary diseases. On other hand, people are endeavoring to develop nanomaterials for improvement or replacement of traditional therapies. On the other hand, nanoparticles, as foreign material in human bodies, are reported to have potential adverse effects on the lung, including oxidase stress, inflammation, fibrosis and genotoxicity. Further, these damages could induce pulmonary diseases and even injuries in other tissues. It seems that nanoparticles may exert two-sided effects. Toxic effects of nanomaterials should be considered when their use is developed for therapies. Hence this review will attempt to summarize the two-side roles of nanoparticles in both therapies for pulmonary diseases and initiation of lung diseases and even secondary diseases caused by lung injuries. Determinants of these effects such as physicochemical properties of nanoparticles will also be discussed.  相似文献   

7.
8.
Macrophages were first described as phagocytic immune cells responsible for maintaining tissue homeostasis by the removal of pathogens that disturb normal function. Historically, macrophages have been viewed as terminally differentiated monocyte-derived cells that originated through hematopoiesis and infiltrated multiple tissues in the presence of inflammation or during turnover in normal homeostasis. However, improved cell detection and fate-mapping strategies have elucidated the various lineages of tissue-resident macrophages, which can derive from embryonic origins independent of hematopoiesis and monocyte infiltration. The role of resident macrophages in organs such as the skin, liver, and the lungs have been well characterized, revealing functions well beyond a pure phagocytic and immunological role. In the heart, recent research has begun to decipher the functional roles of various tissue-resident macrophage populations through fate mapping and genetic depletion studies. Several of these studies have elucidated the novel and unexpected roles of cardiac-resident macrophages in homeostasis, including maintaining mitochondrial function, facilitating cardiac conduction, coronary development, and lymphangiogenesis, among others. Additionally, following cardiac injury, cardiac-resident macrophages adopt diverse functions such as the clearance of necrotic and apoptotic cells and debris, a reduction in the inflammatory monocyte infiltration, promotion of angiogenesis, amelioration of inflammation, and hypertrophy in the remaining myocardium, overall limiting damage extension. The present review discusses the origin, development, characterization, and function of cardiac macrophages in homeostasis, cardiac regeneration, and after cardiac injury or stress.  相似文献   

9.
Fatty acid‐binding proteins (FABP) in alveolar type II (TII) cells are required for surfactant synthesis and regulation. Beyond expression of heart‐type (H‐) and epidermal‐type (E‐) FABP in TII cells from mouse lung, we present the first evidence of the expression of liver‐type (L‐) FABP, by quantitative PCR and immunofluorescent confocal laser microscopy. Further, by making use of an acute mouse lung injury model, we examine whether these lipid‐binding proteins are released into the bronchoalveolar fluid (BALF) and into the circulation upon challenge of the lung with lipopolysaccharide. Applying FABP‐specific ELISAs, we found that neither H‐ nor E‐FABP can be detected in BALF and serum above background levels, up to 24 h after insult. In contrast, L‐FABP was detected in the BALF pellet, consisting of polymorphonuclear cells and alveolar macrophages, and in serum. A significant decrease in L‐FABP levels in the BALF pellet was associated with a significant increase in serum levels 6 h post insult. As contributions of L‐FABP from other organs were excluded, this protein could be used as a marker for acute lung injury.  相似文献   

10.
Non-alcoholic fatty liver disease (NAFLD) is a leading cause of liver cirrhosis and hepatocellular carcinoma. NAFLD is associated with metabolic disorders such as obesity, insulin resistance, dyslipidemia, steatohepatitis, and liver fibrosis. Liver-resident (Kupffer cells) and recruited macrophages contribute to low-grade chronic inflammation in various tissues by modulating macrophage polarization, which is implicated in the pathogenesis of metabolic diseases. Abnormalities in the intestinal environment, such as the gut microbiota, metabolites, and immune system, are also involved in the pathogenesis and development of NAFLD. Hepatic macrophage activation is induced by the permeation of antigens, endotoxins, and other proinflammatory substances into the bloodstream as a result of increased intestinal permeability. Therefore, it is important to understand the role of the gut–liver axis in influencing macrophage activity, which is central to the pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH). Not only probiotics but also biogenics (heat-killed lactic acid bacteria) are effective in ameliorating the progression of NASH. Here we review the effect of hepatic macrophages/Kupffer cells, other immune cells, intestinal permeability, and immunity on NAFLD and NASH and the impact of probiotics, prebiotics, and biogenesis on those diseases.  相似文献   

11.
Factor XIII (FXIII) is a transglutaminase enzyme that catalyses the formation of ε-(γ-glutamyl)lysyl isopeptide bonds into protein substrates. The plasma form, FXIIIA2B2, has an established function in haemostasis, with fibrin being its principal substrate. A deficiency in FXIII manifests as a severe bleeding diathesis emphasising its crucial role in this pathway. The FXIII-A gene (F13A1) is expressed in cells of bone marrow and mesenchymal lineage. The cellular form, a homodimer of the A subunits denoted FXIII-A, was perceived to remain intracellular, due to the lack of a classical signal peptide for its release. It is now apparent that FXIII-A can be externalised from cells, by an as yet unknown mechanism. Thus, three pools of FXIII-A exist within the circulation: plasma where it circulates in complex with the inhibitory FXIII-B subunits, and the cellular form encased within platelets and monocytes/macrophages. The abundance of this transglutaminase in different forms and locations in the vasculature reflect the complex and crucial roles of this enzyme in physiological processes. Herein, we examine the significance of these pools of FXIII-A in different settings and the evidence to date to support their function in haemostasis and wound healing.  相似文献   

12.
Apoptosis of alveolar macrophages following Mycobacterium tuberculosis infection have been demonstrated to play a central role in the pathogenesis of tuberculosis. In the present study, we found that Wnt/β-catenin signaling possesses the potential to promote macrophage apoptosis in response to mycobacterial infection. In agreement with other findings, an activation Wnt/β-catenin signaling was observed in murine macrophage RAW264.7 cells upon Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection at a multiple-of-infection of 10, which was accompanied with up-regulation of pro-inflammatory cytokines TNF-α and IL-6 production. However, the BCG-induced TNF-α and IL-6 secretion could be significantly reduced when the cells were exposed to a canonical Wnt signaling ligand, Wnt3a. Importantly, the activation of Wnt/β-catenin signaling was able to further promote apoptosis in BCG-infected RAW264.7 cells in part by a mitochondria-dependent apoptosis pathway. Immunoblotting analysis further demonstrated that Wnt/β-catenin signaling-induced cell apoptosis partly through a caspase-dependent apoptosis mechanism by down-regulation of anti-apoptotic protein Mcl-1, and up-regulation of pro-apoptotic proteins Bax and cleaved-caspase-3, as well as enhancement of caspase-3 activity in BCG-infected RAW264.7 cells. These data may imply an underlying mechanism of alveolar macrophages in response to mycobacterial infection, by which the pathogen induces Wnt/β-catenin signaling activation, which in turn represses mycobacterium-trigged inflammatory responses and promotes mycobacteria-infected cell apoptosis.  相似文献   

13.
Our previous study showed that in adult mice, conditional Nedd4-2-deficiency in club and alveolar epithelial type II (AE2) cells results in impaired mucociliary clearance, accumulation of Muc5b and progressive, terminal pulmonary fibrosis within 16 weeks. In the present study, we investigated ultrastructural alterations of the alveolar epithelium in relation to interstitial remodeling in alveolar septa as a function of disease progression. Two, eight and twelve weeks after induction of Nedd4-2 knockout, lungs were fixed and subjected to design-based stereological investigation at the light and electron microscopic level. Quantitative data did not show any abnormalities until 8 weeks compared to controls. At 12 weeks, however, volume of septal wall tissue increased while volume of acinar airspace and alveolar surface area significantly decreased. Volume and surface area of alveolar epithelial type I cells were reduced, which could not be compensated by a corresponding increase of AE2 cells. The volume of collagen fibrils in septal walls increased and was linked with an increase in blood–gas barrier thickness. A high correlation between parameters reflecting interstitial remodeling and abnormal AE2 cell ultrastructure could be established. Taken together, abnormal regeneration of the alveolar epithelium is correlated with interstitial septal wall remodeling.  相似文献   

14.
15.
Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer.  相似文献   

16.

Background  

Alveolar macrophages are a key cell in dealing with particles deposited in the lungs and in determining the subsequent response to that particle exposure. Nanoparticles are considered a potential threat to the lungs and the mechanism of pulmonary response to nanoparticles is currently under intense scrutiny. The type II alveolar epithelial cell has previously been shown to release chemoattractants which can recruit alveolar macrophages to sites of particle deposition. The aim of this study was to assess the responses of a type II epithelial cell line (L-2) to both fine and nanoparticle exposure in terms of secretion of chemotactic substances capable of inducing macrophage migration.  相似文献   

17.
Macrophages are present in nearly all vertebrate tissues, where they respond to a complex variety of regulatory signals to coordinate immune functions involved in tissue development, metabolism, homeostasis, and repair. Glycogen synthase kinase 3 (GSK3) is a ubiquitously expressed protein kinase that plays important roles in multiple pathways involved in cell metabolism. Dysregulation of GSK3 has been implicated in several prevalent metabolic disorders, and recent findings have highlighted the importance of GSK3 activity in the regulation of macrophages, especially with respect to the initiation of specific pathologies. This makes GSK3 a potential therapeutic target for the development of novel drugs to modulate immunometabolic responses. Here, we summarize recent findings that have contributed to our understanding of how GSK3 regulates macrophage function, and we discuss the role of GSK3 in the development of metabolic disorders and diseases.  相似文献   

18.
Macrophages play critical roles in both innate and adaptive immunity and are known for their high plasticity in response to various external signals. Macrophages are involved in regulating systematic iron homeostasis and they sequester iron by phagocytotic activity, which triggers M1 macrophage polarization and typically exerts antitumor effects. We previously developed a novel cryo-thermal therapy that can induce the mass release of tumor antigens and damage-associated molecular patterns (DAMPs), promoting M1 macrophage polarization. However, that study did not examine whether iron released after cryo-thermal therapy induced M1 macrophage polarization; this question still needed to be addressed. We hypothesized that cryo-thermal therapy would cause the release of a large quantity of iron to augment M1 macrophage polarization due to the disruption of tumor cells and blood vessels, which would further enhance antitumor immunity. In this study, we investigated iron released in primary tumors, the level of iron in splenic macrophages after cryo-thermal therapy and the effect of iron on macrophage polarization and CD4+ T cell differentiation in metastatic 4T1 murine mammary carcinoma. We found that a large amount of iron was released after cryo-thermal therapy and could be taken up by splenic macrophages, which further promoted M1 macrophage polarization by inhibiting ERK phosphorylation. Moreover, iron promoted DC maturation, which was possibly mediated by iron-induced M1 macrophages. In addition, iron-induced M1 macrophages and mature DCs promoted the differentiation of CD4+ T cells into the CD4 cytolytic T lymphocytes (CTL) subset and inhibited differentiation into Th2 and Th17 cells. This study explains the role of iron in cryo-thermal therapy-induced antitumor immunity from a new perspective.  相似文献   

19.
20.
Pulmonary hypertension is defined as a group of diseases characterized by a progressive increase in pulmonary vascular resistance (PVR), which leads to right ventricular failure and premature death. There are multiple clinical manifestations that can be grouped into five different types. Pulmonary artery remodeling is a common feature in pulmonary hypertension (PH) characterized by endothelial dysfunction and smooth muscle pulmonary artery cell proliferation. The current treatments for PH are limited to vasodilatory agents that do not stop the progression of the disease. Therefore, there is a need for new agents that inhibit pulmonary artery remodeling targeting the main genetic, molecular, and cellular processes involved in PH. Chronic inflammation contributes to pulmonary artery remodeling and PH, among other vascular disorders, and many inflammatory mediators signal through the JAK/STAT pathway. Recent evidence indicates that the JAK/STAT pathway is overactivated in the pulmonary arteries of patients with PH of different types. In addition, different profibrotic cytokines such as IL-6, IL-13, and IL-11 and growth factors such as PDGF, VEGF, and TGFβ1 are activators of the JAK/STAT pathway and inducers of pulmonary remodeling, thus participating in the development of PH. The understanding of the participation and modulation of the JAK/STAT pathway in PH could be an attractive strategy for developing future treatments. There have been no studies to date focused on the JAK/STAT pathway and PH. In this review, we focus on the analysis of the expression and distribution of different JAK/STAT isoforms in the pulmonary arteries of patients with different types of PH. Furthermore, molecular canonical and noncanonical JAK/STAT pathway transactivation will be discussed in the context of vascular remodeling and PH. The consequences of JAK/STAT activation for endothelial cells and pulmonary artery smooth muscle cells’ proliferation, migration, senescence, and transformation into mesenchymal/myofibroblast cells will be described and discussed, together with different promising drugs targeting the JAK/STAT pathway in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号