首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
细菌纤维小体的结构和功能   总被引:4,自引:0,他引:4  
纤维小体(Cellulosome)是多种纤维素酶、半纤维素酶依靠锚定—粘附机制形成的一种多酶复合体结构,通过细胞粘附蛋白附着在细菌细胞壁上,分子量2.0106~2.5106 D,能高效彻底地降解天然纤维素材料。纤维小体的结构和功能是理解原核生物中蛋白与蛋白之间的相互作用和细菌对天然纤维素降解的重要模型。  相似文献   

2.
研究氧化石墨烯、细菌纤维素和纳米微晶纤维素补强天然胶乳胶膜并以纳米微晶纤维素胶乳试制超薄避孕套。结果表明:氧化石墨烯补强胶膜有黑色斑点,氧化石墨烯用量较大时胶膜容易收缩、开裂,弹性较差,强度也较低;细菌纤维素补强胶膜粗糙,有白色斑点,拉伸强度和撕裂强度较低,细菌纤维素的补强效果较差;纳米微晶纤维素A补强胶膜定伸应力、拉伸强度、拉断伸长率和撕裂强度较高,纳米微晶纤维素A的补强效果明显;采用纳米微晶纤维素A和B试制天然胶乳超薄避孕套,当纳米微晶纤维素A和B用量为0.2份时,超薄避孕套的外观均良好,拉伸强度均较高。  相似文献   

3.
王英  哈斯 《山东化工》2023,(4):79-81
围绕天然纤维素的资源化利用和水体重金属治理问题,在传统废水重金属处理方法的基础上,基于天然纤维素的结构特点,展开介绍了改性纤维素吸附剂。综述了天然纤维素改性方法以及改性纤维素吸附剂对于水体中重金属离子的去除效果。通过文献可知:利用化学法从天然原料中提取纤维素的同时对纤维素进行化学改性,制备阳离子型纤维素吸附剂,既能高效地,有选择性地处理水体中的Cu、Zn、Hg、Cr、Cd等主要重金属阳离子,并且能减少化学药剂的使用量和使用种类,降低成本,简化处理工序,避免二次污染,实现循环利用。  相似文献   

4.
细菌纤维素发酵原料的研究进展   总被引:3,自引:1,他引:2  
细菌纤维素是一种新型微生物合成材料,在食品、造纸、纺织、生物医药、声学器材振动膜和功能复合材料等方面均有很好的应用前景。细菌纤维素发酵培养基(尤其碳源)的成本是现今制约细菌纤维素推广应用的主要因素之一。甘露醇、果糖和葡萄糖等合成培养基所用碳源因其价格较高仅适用于实验室研究和小型发酵生产,规模化生产细菌纤维素的潜在原料应是一些量大价低的天然原料,包括水果类原料、糖质原料、低值淀粉类原料和废弃纤维素类原料等。木质纤维素原料是最具发展潜力的细菌纤维素碳源,也是细菌纤维素产业的根本出路,但目前存在一些技术瓶颈,制约了其开发利用,是一远期战略目标。文章简要介绍了细菌纤维素的基本情况,系统阐述了国内外发酵生产细菌纤维素原料的研究进展,展望了今后的发展趋势。  相似文献   

5.
细菌纤维素是一种天然的生物高聚物,具有生物活性、生物可降解性、生物适应性以及独特的物化性能和机械性能,因而成为近年来国际上新型材料的研究热点。本文综述了近年来细菌纤维素与聚乙烯醇制备复合材料的研究进展。  相似文献   

6.
细菌纤维素再生前后结构与性质上的差异   总被引:2,自引:1,他引:1  
对比研究了细菌纤维素和再生细菌纤维素的结构与性质上的差异,揭示了细菌纤维素在氯化锂(LiCl)/二甲基乙酰胺(DMAc)溶剂体系下溶解,经水浴凝固再生前后的形貌、大分子结构、晶型及尺寸、物理机械性能、含水保湿性上的变化,为再生细菌纤维素的应用提供理论依据。  相似文献   

7.
《合成纤维》2017,(11):10-12
采用抗菌试验来表征不同配方的细菌纤维素/氧化亚铜膜的特性,用大肠埃希菌和黑根霉对细菌纤维素/氧化亚铜膜进行定性分析;用大肠埃希菌和金黄色葡萄球菌对细菌纤维素/氧化亚铜膜进行定量分析,得出抑菌率。通过电镜试验,初步观察样品对细菌细胞的破坏机制,试验结果表明:不同配方的细菌纤维素/氧化亚铜膜的抗菌能力不同,抗菌机制主要是改变细胞膜通透性和抑制细胞复制,最终导致细胞死亡。  相似文献   

8.
桉树生长快、适应性强,在我国南方地区获得广泛种植。桉木纸浆品质好,纤维素含量高,是一种优良的天然纤维素来源。利用桉木纤维素制备可生物降解的高吸水树脂不仅可提升桉木纸浆的经济附加值,还可以拓展桉木纸浆的应用领域。  相似文献   

9.
纤维素化学研究进展   总被引:48,自引:3,他引:45       下载免费PDF全文
叶代勇  黄洪  傅和青  陈焕钦 《化工学报》2006,57(8):1782-1791
为了研究当前纤维素化学发展现状,综述了纤维素超分子结构及其成因,介绍了纤维素自组装的结构模型,讨论了纤维素的多种原材料(细菌纤维素、人工化学合成纤维素、棉花、木材、禾草植物、韧皮纤维以及农业废弃物),着重介绍了细菌纤维素的制备与商业用途以及人工化学合成纤维素,综述了目前纤维素化学研究的热门课题:选择性取代、新纤维素溶剂、纤维素的预处理、纤维素衍生物以及纤维素功能材料的发展现状、再生纤维的研究发展现状、纳米纤维素的制备与表面化学改性.选择适宜的原材料,对天然纤维素进行可控物理、化学结构设计,从而可以制备特殊功能的精细化工产品.纤维素化学是21世纪可持续发展的化学工程研究的重要课题之一.  相似文献   

10.
纤维素是最丰富的可再生资源,通过醚化、酯化、降解和接枝共聚等反应可制得一系列产品,但蔗渣等天然纤维素原料中的纤维素被木质素包裹和半纤维素缠绕,且自身通过分子间氢键形成晶体结构使得纤维素的可及度小,难以进行反应。为了提高纤维素可及度,必须对原料进行预处理,脱除木质素和半纤维素以及消除部分晶体结构,本文介绍了蔗渣纤维素化学预处理方法的研究进展。  相似文献   

11.
造纸黑液木质素及其综合利用   总被引:6,自引:0,他引:6  
木质素是结构复杂的数量上仅次于纤维素的芳香族天然高分子物质,是人们提取和利用纤维素时的副产品,本文主要对国内近几年来有关木质素特别是造纸黑液木质素的综合治理和应用技术研究成果进行了综述,内容包括木质素化学结构及其在农林业、石油工业、混凝土工业、高分子材料和合成低分子化学品等领域的综合利用.  相似文献   

12.
The production of bacterial cellulose has been limited due to its high cost and low productivity. Alternative low-cost sources of this biopolymer of high purity and biocompatibility are needed in order to benefit from its enormous potential. Kombucha tea is a trend functional beverage whose production is growing exponentially worldwide, and the bacteria present in this fermented beverage belonging to the genus Komagataeibacter are capable of producing a crystalline biofilm with interesting properties. Obtaining bacterial cellulose from Kombucha tea has already been studied, however several fermentation conditions are being optimized in order to scale-up its production. In this study, we characterized the bacterial cellulose produced from three different Kombucha fermentation conditions. The scanning electron microscopy images revealed the crystalline structure of the biofilms. The energy-dispersive x-ray analysis exhibited the chemical composition of the crystals. The thermogravimetric analysis showed a rate of degradation between 490 and 560°C and the differential scanning calorimetry confirmed the presence of crystalline and amorphous regions in the bacterial cellulose samples. The results suggested that crystalline cellulose could be obtained by varying the fermentation conditions of Kombucha tea.  相似文献   

13.
以细菌纤维素为原料,合成细菌纤维素硫酸酯,用于吸附去除水中的Cu2+。采用红外光谱仪对细菌纤维素硫酸酯的结构进行了分析,探讨了反应时间、温度、H2SO4浓度等因素对交换容量的影响,在优化条件下交换容量为2.87mmol·g-1,并对其吸附Cu2+的性能进行了研究。结果表明,细菌纤维素硫酸酯对Cu2+有强的吸附能力,且易于再生。  相似文献   

14.
以透氧硅胶双套管为模具,设计组装了一套新型生物反应装置,利用红茶菌和套管法生产细菌纤维素(BC)小径人工血管材料。研究发现,细菌纤维素可以分别在内外两根硅胶管的外表面和内表面同时生成,并最终长到一起形成整体BC管。获得的BC管不仅具有较好的强度和光滑平整的内外表面,而且纳米纤维交织紧密,无纤维分层现象,具有突出优点和应用潜力。该制备方法简便易行,成本低廉,生产效率高,可工业化生产。  相似文献   

15.
Synthetic biology is an advanced form of genetic manipulation that applies the principles of modularity and engineering design to reprogram cells by changing their DNA. Over the last decade, synthetic biology has begun to be applied to bacteria that naturally produce biomaterials, in order to boost material production, change material properties and to add new functionalities to the resulting material. Recent work has used synthetic biology to engineer several Komagataeibacter strains; bacteria that naturally secrete large amounts of the versatile and promising material bacterial cellulose (BC). In this review, we summarize how genetic engineering, metabolic engineering and now synthetic biology have been used in Komagataeibacter strains to alter BC, improve its production and begin to add new functionalities into this easy-to-grow material. As well as describing the milestone advances, we also look forward to what will come next from engineering bacterial cellulose by synthetic biology.  相似文献   

16.
细菌纤维素纳米复合材料的研究进展   总被引:2,自引:1,他引:1  
细菌纤维素是一种新型微生物合成材料,与植物纤维素相比,无木质素和半纤维素等伴生产物,同时具有高结晶度和高聚合度、超精细的网络结构、极高的抗张强度和优异的生物相容性,在食品、医药、纺织、化工等方面有着巨大的应用潜力。利用细菌纤维素的纳米网络结构和超强弹性模量等特点可以用于增强聚合物基体,制备无机纳米粒子的模板、分散载体以及用于制备透明增强复合材料。重点介绍了细菌纤维素与高分子材料、无机纳米材料等的纳米复合材料的研究进展,阐述了现阶段存在的问题并对该种复合材料的发展趋势进行了展望。  相似文献   

17.
基于细菌纤维素的多羟基结构,对其进行羧酸化改性;接着以羧酸化细菌纤维素为模板,原位复合聚吡咯(PPy),得到PPy/羧酸化细菌纤维素导电复合材料。并对其微观形貌、化学结构、热稳定性等进行测试表征,重点研究了用不同浓度的氧化剂处理后,复合材料电学性能的变化。结果表明,电子电导率随氧化程度的提高而升高,最高可达10-3 S/cm,编号为0.04-48h的样品具有最佳的离子电导率。  相似文献   

18.
This review summarizes previous work that was done to improve the production of bacterial cellulose nanofibres. Production of biocellulose nanofibres is a subject of interest owing to the wide range of unique properties that makes this product an attractive material for many applications. Bacterial cellulose is a natural nanomaterial that has a native dimension of less than 50 nm in diameter. It is produced in the form of nanofibres, yielding a very pure cellulose product with unique physical properties that distinguish it from plant‐derived cellulose. Its high surface‐to‐volume ratio combined with its unique properties such as poly‐functionality, hydrophilicity and biocompatibility makes it a potential material for applications in the biomedical field. The purpose of this review is to summarize the methods that might help in delivering microbial cellulose to the market at a competitive cost. Different feedstocks in addition to different bioreactor systems that have been previously used are reviewed. The main challenge that exists is the low yield of the cellulosic nanofibres, which can be produced in static and agitated cultures. The static culture method has been used for many years. However, the production cost of this nanomaterial in bioreactor systems is less expensive than the static culture method. Biosynthesis in bioreactors will also be less labour intensive when scaled up. This would improve developing intermediate fermentation scale‐up so that the conversion to an efficient large‐scale fermentation technology will be an easy task. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
详细介绍了利用N-甲基吗啉-N-氧化物(NMMO)为溶剂溶解细菌纤维素以及制备再生细菌纤维素薄膜的工艺流程,并对NMMO溶解细菌纤维素机理进行了简要的分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号