首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cancer-associated fibroblasts (CAFs) are one of the most abundant and critical components of the tumor stroma. CAFs can impact many important steps of cancerogenesis and may also influence treatment resistance. Some of these effects need the direct contact of CAFs and cancer cells, while some involve paracrine signals. In this study, we investigated the ability of head and neck squamous cell carcinomas (HNSCC) patient-derived CAFs to promote or inhibit the colony-forming ability of HNSCC cells. The effect of cisplatin on this promoting or inhibiting influence was also studied. The subsequent analysis focused on changes in the expression of genes associated with cancer progression. We found that cisplatin response in model HNSCC cancer cells was modified by coculture with CAFs, was CAF-specific, and different patient-derived CAFs had a different “sensitizing ratio”. Increased expression of VEGFA, PGE2S, COX2, EGFR, and NANOG in cancer cells was characteristic for the increase of resistance. On the other hand, CCL2 expression was associated with sensitizing effect. Significantly higher amounts of cisplatin were found in CAFs derived from patients who subsequently experienced a recurrence. In conclusion, our results showed that CAFs could promote and/or inhibit colony-forming capability and cisplatin resistance in HNSCC cells via paracrine effects and subsequent changes in gene expression of cancer-associated genes in cancer cells.  相似文献   

2.
3.
4.
Pulmonary fibrosis is one of the important causes of morbidity and mortality in fibroproliferative disorders such as systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF). Insulin-like growth factor binding protein-5 (IGFBP-5) is a conserved member of the IGFBP family of proteins that is overexpressed in SSc and IPF lung tissues. In this study, we investigated the functional role of IGFBP-5 in the development of fibrosis in vivo using a transgenic model. We generated transgenic mice ubiquitously expressing human IGFBP-5 using CRISPR/Cas9 knock-in. Our data show that the heterozygous and homozygous mice are viable and express human IGFBP-5 (hIGFBP-5). Transgenic mice had increased expression of extracellular matrix (ECM) genes, especially Col3a1, Fn, and Lox in lung and skin tissues of mice expressing higher transgene levels. Histologic analysis of the skin tissues showed increased dermal thickness, and the lung histology showed subtle changes in the heterozygous and homozygous mice as compared with the wild-type mice. These changes were more pronounced in animals expressing higher levels of hIGFBP-5. Bleomycin increased ECM gene expression in wild-type mice and accentuated an increase in ECM gene expression in transgenic mice, suggesting that transgene expression exacerbated bleomycin-induced pulmonary fibrosis. Primary lung fibroblasts cultured from lung tissues of homozygous transgenic mice showed significant increases in ECM gene expression and protein levels, further supporting the observation that IGFBP-5 resulted in a fibrotic phenotype in fibroblasts. In summary, transgenic mice expressing human IGFBP-5 could serve as a useful animal model for examining the function of IGFBP-5 in vivo.  相似文献   

5.
Androgen receptor (AR) targeting remains the gold standard treatment for advanced prostate cancer (PCa); however, treatment resistance remains a major clinical problem. To study the therapeutic effects of clinically used anti-androgens we characterized herein a tissue-mimetic three-dimensional (3D) in vitro model whereby PCa cells were cultured alone or with PCa-associated fibroblasts (CAFs). Notably, the ratio of PCa cells to CAFs significantly increased in time in favor of the tumor cells within the spheroids strongly mimicking PCa in vivo. Despite this loss of CAFs, the stromal cells, which were not sensitive to androgen and even stimulated by the anti-androgens, significantly influenced the sensitivity of PCa cells to androgen and to the anti-androgens bicalutamide and enzalutamide. In particular, DuCaP cells lost sensitivity to enzalutamide when co-cultured with CAFs. In LAPC4/CAF and LNCaP/CAF co-culture spheroids the impact of the CAFs was less pronounced. In addition, 3D spheroids exhibited a significant increase in E-cadherin and substantial expression of vimentin in co-culture spheroids, whereas AR levels remained unchanged or even decreased. In LNCaP/CAF spheroids we further found increased Akt signaling that could be inhibited by the phosphatidyl-inositol 3 kinase (PI3K) inhibitor LY294002, thereby overcoming the anti-androgen resistance of the spheroids. Our data show that CAFs influence drug response of PCa cells with varying impact and further suggest this spheroid model is a valuable in vitro drug testing tool.  相似文献   

6.
7.
Tumor-infiltrating immune cells phenotype is associated with tumor progression. However, little is known about the phenotype of the peripheral blood mononuclear cells (PBMC) from breast cancer patients. We investigated MMP1 and MMP11 expression in PBMC from breast cancer patients and we analyzed gene expression changes upon their interaction with cancer cells and cancer-associated fibroblasts (CAF). We measured the impact of PBMC on proinflammatory gene expression in breast cancer cells, normal fibroblast (NF), and CAF and the impact on proliferation and invasiveness capacity of breast cancer cells. Gene expression of MMP1 and MMP11 in PBMC from breast cancer patients (n = 54) and control (n = 28); expression of IL1A, IL6, IL17, IFNβ, and NFĸB in breast cancer cell lines (MCF-7 and MDA-MB-231); and, additionally, IL10 and MMP11 in CAF and NF were analyzed by qRT-PCR before and after co-culture. Our results show the existence of a subpopulation of breast cancer patients (25.9%) with very high levels of MMP11 gene expression in PBMC. Also, gene expression of MMP1 and MMP11 increases in PBMC after co-culture with breast cancer cell lines, NF or CAF. PBMC from healthy or breast cancer patients induce an increased proliferation rate on MCF-7 and an increased invasiveness capacity of MDA-MB-231. Finally, we show a differential expression profile of inflammatory genes in NF and CAF when co-cultured with control or breast cancer PBMC. We have observed that MMPs’ expression in PBMC is regulated by the microenvironment, while the expression of inflammatory genes in NF or CAF is differentially regulated by PBMC. These findings confirm the importance of the crosstalk between stromal cells and suggest that PBMC would play a role in promoting aggressive tumor behavior.  相似文献   

8.
9.
Solid tumors are complex systems characterized by dynamic interactions between neoplastic cells, non-tumoral cells, and extracellular components. Among all the stromal cells that populate tumor microenvironment, fibroblasts are the most abundant elements and are critically involved in disease progression. Cancer-associated fibroblasts (CAFs) have pleiotropic functions in tumor growth and extracellular matrix remodeling implicated in local invasion and distant metastasis. CAFs additionally participate in the inflammatory response of the tumor site by releasing a variety of chemokines and cytokines. It is becoming clear that understanding the dynamic, mutual melanoma–fibroblast relationship would enable treatment options to be amplified. To better characterize melanoma-associated fibroblasts, here we analyzed low-passage primary CAFs derived from advanced-stage primary skin melanomas, focusing on the immuno-phenotype. Furthermore, we assessed the expression of several CAF markers and the production of growth factors. To deepen the study of CAF–melanoma cell crosstalk, we employed CAF-derived supernatants and trans-well co-culture systems to evaluate the influences of CAFs on (i) the motogenic ability of melanoma cells, (ii) the chemotherapy-induced cytotoxicity, and (iii) the release of mediators active in modulating tumor growth and spread.  相似文献   

10.
11.
12.
13.
The experimental animal model is still essential in the development of new anticancer drugs. We characterized mouse tumors derived from two-dimensional (2D) monolayer cells or three-dimensional (3D) spheroids to establish an in vivo model with highly standardized conditions. Primary cancer-associated fibroblasts (CAFs) were cultured from head and neck squamous cell carcinoma (HNSCC) tumor tissues and co-injected with monolayer cancer cells or spheroids into the oral mucosa of mice. Mice tumor blood vessels were stained, followed by tissue clearing and 3D Lightsheet fluorescent imaging. We compared the effect of exosomes secreted from 2D or 3D culture conditions on the angiogenesis-related genes in HNSCC cells. Our results showed that both the cells and spheroids co-injected with primary CAFs formed tumors. Interestingly, vasculature was abundantly distributed inside the spheroid-derived but not the monolayer-derived mice tumors. In addition, cisplatin injection more significantly decreased spheroid-derived but not monolayer-derived tumor size in mice. Additionally, exosomes isolated from co-culture media of FaDu spheroid and CAF upregulated angiogenesis-related genes in HNSCC cells as compared to exosomes from FaDu cell and CAF co-culture media under in vitro conditions. The mouse tumor xenograft model derived from 3D spheroids of HNSCC cells with primary CAFs is expected to produce reliable chemotherapy drug screening results given the robust angiogenesis and lack of necrosis inside tumor tissues.  相似文献   

14.
15.
Rice black-streaked dwarf virus (RBSDV) belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA) construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21–24 nt small interfering RNA (siRNA). By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.  相似文献   

16.
Genetically modified (GM) crops possess some superior characteristics, such as high yield and insect resistance, but their biosafety has aroused broad public concern. Some genetic engineering technologies have recently been proposed to remove exogenous genes from GM crops. Few approaches have been applied to maintain advantageous traits, but excising exogenous genes in seeds or fruits from these hybrid crops has led to the generation of harvested food without exogenous genes. In a previous study, split-Cre mediated by split intein could recombine its structure and restore recombination activity in hybrid plants. In the current study, the recombination efficiency of split-Cre under the control of ovule-specific or pollen-specific promoters was validated by hybridization of transgenic Arabidopsis containing the improved expression vectors. In these vectors, all exogenous genes were flanked by two loxP sites, including promoters, resistance genes, reporter genes, and split-Cre genes linked to the reporter genes via LP4/2A. A gene deletion system was designed in which NCre was driven by proDD45, and CCre was driven by proACA9 and proDLL. Transgenic lines containing NCre were used as paternal lines to hybridize with transgenic lines containing CCre. Because this hybridization method results in no co-expression of the NCre and CCre genes controlled by reproduction-specific promoters in the F1 progeny, the desirable characteristics could be retained. After self-crossing in F1 progeny, the expression level and protein activity of reporter genes were detected, and confirmed that recombination of split-Cre had occurred and the exogenous genes were partially deleted. The gene deletion efficiency represented by the quantitative measurements of GUS enzyme activity was over 59%, with the highest efficiency of 73% among variable hybrid combinations. Thus, in the present study a novel dual reproductive cell-specific promoter-mediated gene deletion system was developed that has the potential to take advantage of the merits of GM crops while alleviating biosafety concerns.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号